Summary
A massive astrophysical compact halo object (MACHO) is a kind of astronomical body that might explain the apparent presence of dark matter in galaxy halos. A MACHO is a body that emits little or no radiation and drifts through interstellar space unassociated with any planetary system (and may or may not be composed of normal baryonic matter). Since MACHOs are not luminous, they are hard to detect. MACHO candidates include black holes or neutron stars as well as brown dwarfs and unassociated planets. White dwarfs and very faint red dwarfs have also been proposed as candidate MACHOs. The term was coined by astrophysicist Kim Griest. A MACHO may be detected when it passes in front of or nearly in front of a star and the MACHO's gravity bends the light, causing the star to appear brighter in an example of gravitational lensing known as gravitational microlensing. Several groups have searched for MACHOs by searching for the microlensing amplification of light. These groups have ruled out dark matter being explained by MACHOs with mass in the range 1e-8 solar masses (0.3 lunar masses) to 100 solar masses. One group, the MACHO collaboration, claimed in 2000 to have found enough microlensing to predict the existence of many MACHOs with mean mass of about 0.5 solar masses, enough to make up perhaps 20% of the dark matter in the galaxy. This suggests that MACHOs could be white dwarfs or red dwarfs which have similar masses. However, red and white dwarfs are not completely dark; they do emit some light, and so can be searched for with the Hubble Space Telescope and with proper motion surveys. These searches have ruled out the possibility that these objects make up a significant fraction of dark matter in our galaxy. Another group, the EROS2 collaboration, does not confirm the signal claims by the MACHO group. They did not find enough microlensing effect with a sensitivity higher by a factor 2. Observations using the Hubble Space Telescope's NICMOS instrument showed that less than one percent of the halo mass is composed of red dwarfs.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.