Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, although originally it also included the cratonic areas of Greenland and also the northwestern part of Scotland, known as the Hebridean Terrane. During other times in its past, Laurentia has been part of larger continents and supercontinents and itself consists of many smaller terranes assembled on a network of Early Proterozoic orogenic belts. Small microcontinents and oceanic islands collided with and sutured onto the ever-growing Laurentia, and together formed the stable Precambrian craton seen today. The craton is named after the Laurentian Shield, through the Laurentian Mountains, which received their name from the Saint Lawrence River, named after Lawrence of Rome. In eastern and central Canada, much of the stable craton is exposed at the surface as the Canadian Shield, an area of Precambrian rock covering over a million square miles. This includes some of the oldest rock on Earth, such as the Archean rock of the Acasta Gneiss of Canada, which is 4.04 billion years (Ga) old, and the Istaq Gneiss Complex of Greenland, which is 3.8 billion years old. When subsurface extensions are considered, the wider term Laurentian Shield is more common, not least because large parts of the structure extend outside Canada. In the United States, the craton bedrock is covered with sedimentary rocks on the broad interior platform in the Midwest and Great Plains regions and is exposed only in northern Minnesota, Wisconsin, the New York Adirondacks, and the Upper Peninsula of Michigan. The sequence of sedimentary rocks varies from about 1,000 m to in excess of 6,100 m (3,500–20,000 ft) in thickness. The cratonic rocks are metamorphic or igneous with the overlying sedimentary layers composed mostly of limestones, sandstones, and shales. These sedimentary rocks were largely deposited from 650 to 290 million years ago.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (24)
Pangaea
Pangaea or Pangea (pænˈdʒiː.ə) was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from the earlier continental units of Gondwana, Euramerica and Siberia during the Carboniferous approximately 335 million years ago, and began to break apart about 200 million years ago, at the end of the Triassic and beginning of the Jurassic. In contrast to the present Earth and its distribution of continental mass, Pangaea was centred on the equator and surrounded by the superocean Panthalassa and the Paleo-Tethys and subsequent Tethys Oceans.
Grenville orogeny
The Grenville orogeny was a long-lived Mesoproterozoic mountain-building event associated with the assembly of the supercontinent Rodinia. Its record is a prominent orogenic belt which spans a significant portion of the North American continent, from Labrador to Mexico, as well as to Scotland. Grenville orogenic crust of mid-late Mesoproterozoic age (c. 1250–980 Ma) is found worldwide, but generally only events which occurred on the southern and eastern margins of Laurentia are recognized under the "Grenville" name.
Old Red Sandstone
The Old Red Sandstone is an assemblage of rocks in the North Atlantic region largely of Devonian age. It extends in the east across Great Britain, Ireland and Norway, and in the west along the eastern seaboard of North America. It also extends northwards into Greenland and Svalbard. These areas were a part of the ancient continent of Euramerica/Laurussia. In Britain it is a lithostratigraphic unit (a sequence of rock strata) to which stratigraphers accord supergroup status and which is of considerable importance to early paleontology.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.