Magma (algebra)In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed. The term groupoid was introduced in 1927 by Heinrich Brandt describing his Brandt groupoid (translated from the German Gruppoid). The term was then appropriated by B. A. Hausmann and Øystein Ore (1937) in the sense (of a set with a binary operation) used in this article.
Identity functionIn mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unchanged. That is, when f is the identity function, the equality f(X) = X is true for all values of X to which f can be applied. Formally, if M is a set, the identity function f on M is defined to be a function with M as its domain and codomain, satisfying In other words, the function value f(X) in the codomain M is always the same as the input element X in the domain M.
Transformation semigroupIn algebra, a transformation semigroup (or composition semigroup) is a collection of transformations (functions from a set to itself) that is closed under function composition. If it includes the identity function, it is a monoid, called a transformation (or composition) monoid. This is the semigroup analogue of a permutation group. A transformation semigroup of a set has a tautological semigroup action on that set. Such actions are characterized by being faithful, i.e., if two elements of the semigroup have the same action, then they are equal.
Absorbing elementIn mathematics, an absorbing element (or annihilating element) is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element itself. In semigroup theory, the absorbing element is called a zero element because there is no risk of confusion with other notions of zero, with the notable exception: under additive notation zero may, quite naturally, denote the neutral element of a monoid.
SemiautomatonIn mathematics and theoretical computer science, a semiautomaton is a deterministic finite automaton having inputs but no output. It consists of a set Q of states, a set Σ called the input alphabet, and a function T: Q × Σ → Q called the transition function. Associated with any semiautomaton is a monoid called the characteristic monoid, input monoid, transition monoid or transition system of the semiautomaton, which acts on the set of states Q.
Cancellation propertyIn mathematics, the notion of cancellativity (or cancellability) is a generalization of the notion of invertibility. An element a in a magma (M, ∗) has the left cancellation property (or is left-cancellative) if for all b and c in M, a ∗ b = a ∗ c always implies that b = c. An element a in a magma (M, ∗) has the right cancellation property (or is right-cancellative) if for all b and c in M, b ∗ a = c ∗ a always implies that b = c. An element a in a magma (M, ∗) has the two-sided cancellation property (or is cancellative) if it is both left- and right-cancellative.
Semigroup actionIn algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup (using the semigroup operation) is associated with the composite of the two corresponding transformations. The terminology conveys the idea that the elements of the semigroup are acting as transformations of the set.
Trace monoidIn computer science, a trace is a set of strings, wherein certain letters in the string are allowed to commute, but others are not. It generalizes the concept of a string, by not forcing the letters to always be in a fixed order, but allowing certain reshufflings to take place. Traces were introduced by Pierre Cartier and Dominique Foata in 1969 to give a combinatorial proof of MacMahon's master theorem.
Syntactic monoidIn mathematics and computer science, the syntactic monoid of a formal language is the smallest monoid that recognizes the language . The free monoid on a given set is the monoid whose elements are all the strings of zero or more elements from that set, with string concatenation as the monoid operation and the empty string as the identity element. Given a subset of a free monoid , one may define sets that consist of formal left or right inverses of elements in .
Constant functionIn mathematics, a constant function is a function whose (output) value is the same for every input value. For example, the function y(x) = 4 is a constant function because the value of y(x) is 4 regardless of the input value x (see image). As a real-valued function of a real-valued argument, a constant function has the general form y(x) = c or just y = c. Example: The function y(x) = 2 or just y = 2 is the specific constant function where the output value is c = 2. The domain of this function is the set of all real numbers R.