Summary
A circular sector, also known as circle sector or disk sector (symbol: ⌔), is the portion of a disk (a closed region bounded by a circle) enclosed by two radii and an arc, where the smaller area is known as the minor sector and the larger being the major sector. In the diagram, θ is the central angle, the radius of the circle, and is the arc length of the minor sector. The angle formed by connecting the endpoints of the arc to any point on the circumference that is not in the sector is equal to half the central angle. A sector with the central angle of 180° is called a half-disk and is bounded by a diameter and a semicircle. Sectors with other central angles are sometimes given special names, such as quadrants (90°), sextants (60°), and octants (45°), which come from the sector being one 4th, 6th or 8th part of a full circle, respectively. Confusingly, the arc of a quadrant (a circular arc) can also be termed a quadrant. Traditionally wind directions on the compass rose are given as one of the 8 octants (N, NE, E, SE, S, SW, W, NW) because that is more precise than merely giving one of the 4 quadrants, and the wind vane typically does not have enough accuracy to allow more precise indication. The name of the instrument "octant" comes from the fact that it is based on 1/8th of the circle. Most commonly, octants are seen on the compass rose. Circular arc#Sector area The total area of a circle is πr^2. The area of the sector can be obtained by multiplying the circle's area by the ratio of the angle θ (expressed in radians) and 2π (because the area of the sector is directly proportional to its angle, and 2π is the angle for the whole circle, in radians): The area of a sector in terms of L can be obtained by multiplying the total area pir^2 by the ratio of L to the total perimeter 2pir. Another approach is to consider this area as the result of the following integral: Converting the central angle into degrees gives The length of the perimeter of a sector is the sum of the arc length and the two radii: where θ is in radians.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (4)
CIVIL-123: Structures II
Le cours permet de comprendre le fonctionnement, déterminer les efforts et de dimensionner les structures en treillis, en poutre, en dalle et en cadre. Le cours se base sur la résolution des efforts p
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
EE-548: Audio engineering
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
Show more