In telecommunications, long-term evolution (LTE) is a standard for wireless broadband communication for mobile devices and data terminals, based on the GSM/EDGE and UMTS/HSPA standards. It improves on those standards' capacity and speed by using a different radio interface and core network improvements. LTE is the upgrade path for carriers with both GSM/UMTS networks and CDMA2000 networks. Because LTE frequencies and bands differ from country to country, only multi-band phones can use LTE in all countries where it is supported.
The standard is developed by the 3GPP (3rd Generation Partnership Project) and is specified in its Release 8 document series, with minor enhancements described in Release 9. LTE is also called 3.95G and has been marketed as 4G LTE and Advanced 4G; but the original version did not meet the technical criteria of a 4G wireless service, as specified in the 3GPP Release 8 and 9 document series for LTE Advanced. The requirements were set forth by the ITU-R organisation in the IMT Advanced specification; but, because of market pressure and the significant advances that WiMAX, Evolved High Speed Packet Access, and LTE bring to the original 3G technologies, ITU-R later decided that LTE and the aforementioned technologies can be called 4G technologies. The LTE Advanced standard formally satisfies the ITU-R requirements for being considered IMT-Advanced. To differentiate LTE Advanced and WiMAX-Advanced from current 4G technologies, ITU has defined the latter as "True 4G".
List of LTE networks
LTE stands for Long-Term Evolution and is a registered trademark owned by ETSI (European Telecommunications Standards Institute) for the wireless data communications technology and a development of the GSM/UMTS standards. However, other nations and companies do play an active role in the LTE project. The goal of LTE was to increase the capacity and speed of wireless data networks using new DSP (digital signal processing) techniques and modulations that were developed around the turn of the millennium.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Students extend their knowledge on wireless communication systems to spread-spectrum communication and to multi-antenna systems. They also learn about the basic information theoretic concepts, about c
Vodafone Group plc (ˈvəʊdəfəʊn) is a British multinational telecommunications company. Its registered office and global headquarters are in Newbury, Berkshire, England. It predominantly operates services in Asia, Africa, Europe, and Oceania. Vodafone owns and operates networks in 21 countries, with partner networks in 48 further countries. Its Vodafone Global Enterprise division provides telecommunications and IT services to corporate clients in 150 countries.
Wireless broadband is a telecommunications technology that provides high-speed wireless Internet access or computer networking access over a wide area. The term encompasses both fixed and mobile broadband. Originally the word "broadband" had a technical meaning, but became a marketing term for any kind of relatively high-speed computer network or Internet access technology. According to the 802.16-2004 standard, broadband means "having instantaneous bandwidths greater than 1 MHz and supporting data rates greater than about 1.
4G is the fourth generation of broadband cellular network technology, succeeding 3G and preceding 5G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television. However, in December 2010, the ITU expanded its definition of 4G to include Long Term Evolution (LTE), Worldwide Interoperability for Microwave Access (WiMAX), and Evolved High Speed Packet Access (HSPA+).
In this paper a subarray fed by an analog beamforming network for 5G picocell applications is proposed. Design requirements are presented taking into account frequency band operation, bandwidth, radiation pattern shape and both, antenna element and transmi ...
Deployable emergency communication systems are a backbone solution for replacing damaged network infrastructures and/or providing high-end services in case of an emergency event. It is important that such systems are up-to-date with the latest mobile netwo ...
EPFL2021
, ,
In-band full-duplex systems promise to further increase the throughput of wireless systems, by simultaneously transmitting and receiving on the same frequency band. However, concurrent transmission generates a strong self-interference signal at the receive ...