Concept

Skew lines

Summary
In three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. Two lines that both lie in the same plane must either cross each other or be parallel, so skew lines can exist only in three or more dimensions. Two lines are skew if and only if they are not coplanar. If four points are chosen at random uniformly within a unit cube, they will almost surely define a pair of skew lines. After the first three points have been chosen, the fourth point will define a non-skew line if, and only if, it is coplanar with the first three points. However, the plane through the first three points forms a subset of measure zero of the cube, and the probability that the fourth point lies on this plane is zero. If it does not, the lines defined by the points will be skew. Similarly, in three-dimensional space a very small perturbation of any two parallel or intersecting lines will almost certainly turn them into skew lines. Therefore, any four points in general position always form skew lines. In this sense, skew lines are the "usual" case, and parallel or intersecting lines are special cases. If each line in a pair of skew lines is defined by two points that it passes through, then these four points must not be coplanar, so they must be the vertices of a tetrahedron of nonzero volume. Conversely, any two pairs of points defining a tetrahedron of nonzero volume also define a pair of skew lines. Therefore, a test of whether two pairs of points define skew lines is to apply the formula for the volume of a tetrahedron in terms of its four vertices. Denoting one point as the 1×3 vector a whose three elements are the point's three coordinate values, and likewise denoting b, c, and d for the other points, we can check if the line through a and b is skew to the line through c and d by seeing if the tetrahedron volume formula gives a non-zero result: Line–line intersection#Nearest points to skew lines Triangulation (computer vision)#Mid-point method Expressing the two lines as vectors: The cross product of and is perpendicular to the lines.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.