Concept

Divergent evolution

Summary
Divergent evolution or divergent selection is the accumulation of differences between closely related populations within a species, sometimes leading to speciation. Divergent evolution is typically exhibited when two populations become separated by a geographic barrier (such as in allopatric or peripatric speciation) and experience different selective pressures that drive adaptations to their new environment. After many generations and continual evolution, the populations become less able to interbreed with one another. The American naturalist J. T. Gulick (1832–1923) was the first to use the term "divergent evolution", with its use becoming widespread in modern evolutionary literature. Classic examples of divergence in nature are the adaptive radiation of the finches of the Galapagos or the coloration differences in populations of a species that live in different habitats such as with pocket mice and fence lizards. The term can also be applied in molecular evolution, such as to proteins that derive from homologous genes. Both orthologous genes (resulting from a speciation event) and paralogous genes (resulting from gene duplication) can illustrate divergent evolution. Through gene duplication, it is possible for divergent evolution to occur between two genes within a species. Similarities between species that have diverged are due to their common origin, so such similarities are homologies. In contrast, convergent evolution arises when an adaptation has arisen independently, creating analogous structures such as the wings of birds and of insects. The term divergent evolution is believed to have been first used by J. T. Gulick. Divergent evolution is commonly defined as what occurs when two groups of the same species evolve different traits within those groups in order to accommodate for differing environmental and social pressures. Various examples of such pressures can include predation, food supplies, and competition for mates.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.