Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay, all of which involve emitting particles. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetism and nuclear force.
Radioactive decay is a stochastic (i.e. random) process at the level of single atoms. According to quantum theory, it is impossible to predict when a particular atom will decay, regardless of how long the atom has existed. However, for a significant number of identical atoms, the overall decay rate can be expressed as a decay constant or as half-life. The half-lives of radioactive atoms have a huge range; from nearly instantaneous to far longer than the age of the universe.
The decaying nucleus is called the parent radionuclide (or parent radioisotope), and the process produces at least one daughter nuclide. Except for gamma decay or internal conversion from a nuclear excited state, the decay is a nuclear transmutation resulting in a daughter containing a different number of protons or neutrons (or both). When the number of protons changes, an atom of a different chemical element is created.
There are 28 naturally occurring chemical elements on Earth that are radioactive, consisting of 34 radionuclides (6 elements have 2 different radionuclides) that date before the time of formation of the Solar System. These 34 are known as primordial nuclides. Well-known examples are uranium and thorium, but also included are naturally occurring long-lived radioisotopes, such as potassium-40.
Radioactivity was discovered in 1896 by scientists Henri Becquerel and Marie Skłodowska-Curie, while working with phosphorescent materials. These materials glow in the dark after exposure to light, and Becquerel suspected that the glow produced in cathode ray tubes by X-rays might be associated with phosphorescence.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours est une introduction à la mécanique quantique. En partant de son développement historique, le cours traite les notions de complémentarité quantique et le principe d'incertitude, le processus
Introduction générale sur l'état des connaissances en physique des particules élémentaires: de la cinématique relativiste à l'interprétation phénoménologique des collisions à haute énergie.
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an atomic number that is reduced by two. An alpha particle is identical to the nucleus of a helium-4 atom, which consists of two protons and two neutrons. It has a charge of +2e and a mass of 4Da. For example, uranium-238 decays to form thorium-234.
Half-life (symbol t_1⁄2) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive. The term is also used more generally to characterize any type of exponential (or, rarely, non-exponential) decay. For example, the medical sciences refer to the biological half-life of drugs and other chemicals in the human body.
The becquerel (ˌbɛkəˈrɛl; symbol: Bq) is the unit of radioactivity in the International System of Units (SI). One becquerel is defined as the activity of a quantity of radioactive material in which one nucleus decays per second. For applications relating to human health this is a small quantity, and SI multiples of the unit are commonly used. The becquerel is named after Henri Becquerel, who shared a Nobel Prize in Physics with Pierre and Marie Skłodowska Curie in 1903 for their work in discovering radioactivity.
A large variety of new physics models suggest that the rates for lepton flavour violating b-hadron decays may be much higher than predicted in the Standard Model, which leads to a high interest in the search for such decays. This thesis presents the sear ...
The first historical steps of radioactivity research offer an excellent opportunity to teach a key concept of modern physics: non-deterministic phenomena. However, this opportunity is often wasted because of historical misconceptions and of the irrational ...
Charge separation processes in organic semiconductors play a pivotal role in diverse applications ranging from photovoltaics to photocatalysis. Understanding these mechanisms, particularly the role of hybrid charge-transfer (CT) states, is essential for ad ...