Food irradiationFood irradiation (sometimes radurization or radurisation) is the process of exposing food and food packaging to ionizing radiation, such as from gamma rays, x-rays, or electron beams. Food irradiation improves food safety and extends product shelf life (preservation) by effectively destroying organisms responsible for spoilage and foodborne illness, inhibits sprouting or ripening, and is a means of controlling insects and invasive pests. In the US, consumer perception of foods treated with irradiation is more negative than those processed by other means.
Fertile materialFertile material is a material that, although not fissile itself, can be converted into a fissile material by neutron absorption. Naturally occurring fertile materials that can be converted into a fissile material by irradiation in a reactor include: thorium-232 which converts into uranium-233 uranium-234 which converts into uranium-235 uranium-238 which converts into plutonium-239 Artificial isotopes formed in the reactor which can be converted into fissile material by one neutron capture include: plutonium-238 which converts into plutonium-239 plutonium-240 which converts into plutonium-241 Some other actinides need more than one neutron capture before arriving at an isotope which is both fissile and long-lived enough to probably be able to capture another neutron and fission instead of decaying.
Reprocessed uraniumReprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium makes up the bulk of the material separated during reprocessing. Commercial LWR spent nuclear fuel contains on average (excluding cladding) only four percent plutonium, minor actinides and fission products by weight.
High-level wasteHigh-level waste (HLW) is a type of nuclear waste created by the reprocessing of spent nuclear fuel. It exists in two main forms: First and second cycle raffinate and other waste streams created by nuclear reprocessing. Waste formed by vitrification of liquid high-level waste. Liquid high-level waste is typically held temporarily in underground tanks pending vitrification. Most of the high-level waste created by the Manhattan Project and the weapons programs of the cold war exists in this form because funding for further processing was typically not part of the original weapons programs.
Technetium-99Technetium-99 (99Tc) is an isotope of technetium which decays with a half-life of 211,000 years to stable ruthenium-99, emitting beta particles, but no gamma rays. It is the most significant long-lived fission product of uranium fission, producing the largest fraction of the total long-lived radiation emissions of nuclear waste. Technetium-99 has a fission product yield of 6.0507% for thermal neutron fission of uranium-235. The metastable technetium-99m (99mTc) is a short-lived (half-life about 6 hours) nuclear isomer used in nuclear medicine, produced from molybdenum-99.
Noble metalA noble metal is ordinarily regarded as a metallic chemical element that is generally resistant to corrosion and is usually found in nature in its raw form. Gold, platinum, and the other platinum group metals (ruthenium, rhodium, palladium, osmium, iridium) are most often so classified. Silver, copper and mercury are sometimes included as noble metals, however less often as each of these usually occurs in nature combined with sulfur. In more specialized fields of study and applications the number of elements counted as noble metals can be smaller or larger.
Plutonium-240Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. 240Pu undergoes spontaneous fission as a secondary decay mode at a small but significant rate. The presence of 240Pu limits plutonium's use in a nuclear bomb, because the neutron flux from spontaneous fission initiates the chain reaction prematurely, causing an early release of energy that physically disperses the core before full implosion is reached.
Uranium hexafluorideUranium hexafluoride (), (sometimes called "hex") is an inorganic compound with the formula UF6. Uranium hexafluoride is a volatile white solid that reacts with water, releasing corrosive hydrofluoric acid. The compound reacts mildly with aluminium, forming a thin surface layer of AlF3 that resists any further reaction from the compound. UF6 is used in the process of enriching uranium, which produces fuel for nuclear reactors and nuclear weapons. Milled uranium ore—U3O8 or "yellowcake"—is dissolved in nitric acid, yielding a solution of uranyl nitrate UO2(NO3)2.
Spent fuel poolSpent fuel pools (SFP) are storage pools (or "ponds" in the United Kingdom) for spent fuel from nuclear reactors. They are typically 40 or more feet (12 m) deep, with the bottom 14 feet (4.3 m) equipped with storage racks designed to hold fuel assemblies removed from reactors. A reactor's local pool is specially designed for the reactor in which the fuel was used and is situated at the reactor site. Such pools are used for short-term cooling of the fuel rods.
Nuclear engineeringNuclear engineering is the engineering discipline concerned with the design and application of systems that make use of the energy released by nuclear processes. The most prominent application of nuclear engineering is the generation of electricity. Worldwide, some 440 nuclear reactors in 32 countries generate 10 percent of the world's energy through nuclear fission. In the future, it is expected that nuclear fusion will add another nuclear means of generating energy.