Concept

Deuterostome

Summary
Deuterostomia (ˌdjuːtərəˈstoʊmi.ə; second mouth in Greek) are animals typically characterized by their anus forming before their mouth during embryonic development. The group's sister clade is Protostomia, animals whose digestive tract development is more varied. Some examples of deuterostomes include vertebrates (and thus humans), sea stars, and crinoids. In deuterostomy, the developing embryo's first opening (the blastopore) becomes the anus, while the mouth is formed at a different site later on. This was initially the group's distinguishing characteristic, but deuterostomy has since been discovered among protostomes as well. This group is also known as enterocoelomates, because their coelom develops through enterocoely. The three major clades of deuterostomes are Chordata (e.g. vertebrates), Echinodermata (e.g. starfish), and Hemichordata (e.g. acorn worms). Together with Protostomia and their out-group Xenacoelomorpha, these compose the Bilateria, animals with bilateral symmetry and three germ layers. Initially, Deuterostomia included the phyla Brachiopoda, Bryozoa, Chaetognatha, and Phoronida based on morphological and embryological characteristics. However, Superphylum Deuterostomia was redefined in 1995 based on DNA molecular sequence analyses when the lophophorates were removed from it and combined with other protostome animals to form superphylum Lophotrochozoa. The phylum Chaetognatha (arrow worms) may belong here, but molecular studies have placed them in the protostomes more often. Genetic studies have also revealed that deuterostomes have more than 30 genes not found in any other animal groups, but are present in some marine algae and prokaryotes. Which could mean they are very ancient genes that were lost in other organsisms, or that a common ancestor acquired them through horizontal gene transfer. While protostomes as a monophyletic group has strong support, research have shown that deuterostomes may be paraphyletic, and what was once considered traits of deuterostomes could instead be traits of the last common bilaterian ancestor.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.