Elementary classIn model theory, a branch of mathematical logic, an elementary class (or axiomatizable class) is a class consisting of all structures satisfying a fixed first-order theory. A class K of structures of a signature σ is called an elementary class if there is a first-order theory T of signature σ, such that K consists of all models of T, i.e., of all σ-structures that satisfy T. If T can be chosen as a theory consisting of a single first-order sentence, then K is called a basic elementary class.
Atomic formulaIn mathematical logic, an atomic formula (also known as an atom or a prime formula) is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformulas. Atoms are thus the simplest well-formed formulas of the logic. Compound formulas are formed by combining the atomic formulas using the logical connectives.
Saturated modelIn mathematical logic, and particularly in its subfield model theory, a saturated model M is one that realizes as many complete types as may be "reasonably expected" given its size. For example, an ultrapower model of the hyperreals is -saturated, meaning that every descending nested sequence of internal sets has a nonempty intersection. Let κ be a finite or infinite cardinal number and M a model in some first-order language. Then M is called κ-saturated if for all subsets A ⊆ M of cardinality less than κ, the model M realizes all complete types over A.
Definable setIn mathematical logic, a definable set is an n-ary relation on the domain of a structure whose elements satisfy some formula in the first-order language of that structure. A set can be defined with or without parameters, which are elements of the domain that can be referenced in the formula defining the relation. Let be a first-order language, an -structure with domain , a fixed subset of , and a natural number.
Skolem's paradoxIn mathematical logic and philosophy, Skolem's paradox is a seeming contradiction that arises from the downward Löwenheim–Skolem theorem. Thoralf Skolem (1922) was the first to discuss the seemingly contradictory aspects of the theorem, and to discover the relativity of set-theoretic notions now known as non-absoluteness. Although it is not an actual antinomy like Russell's paradox, the result is typically called a paradox and was described as a "paradoxical state of affairs" by Skolem (1922: p. 295).
Substructure (mathematics)In mathematical logic, an (induced) substructure or (induced) subalgebra is a structure whose domain is a subset of that of a bigger structure, and whose functions and relations are restricted to the substructure's domain. Some examples of subalgebras are subgroups, submonoids, subrings, subfields, subalgebras of algebras over a field, or induced subgraphs. Shifting the point of view, the larger structure is called an extension or a superstructure of its substructure.
FinitaryIn mathematics and logic, an operation is finitary if it has finite arity, i.e. if it has a finite number of input values. Similarly, an infinitary operation is one with an infinite number of input values. In standard mathematics, an operation is finitary by definition. Therefore these terms are usually only used in the context of infinitary logic. A finitary argument is one which can be translated into a finite set of symbolic propositions starting from a finite set of axioms.
Lindström's theoremIn mathematical logic, Lindström's theorem (named after Swedish logician Per Lindström, who published it in 1969) states that first-order logic is the strongest logic (satisfying certain conditions, e.g. closure under classical negation) having both the (countable) compactness property and the (downward) Löwenheim–Skolem property. Lindström's theorem is perhaps the best known result of what later became known as abstract model theory, the basic notion of which is an abstract logic; the more general notion of an institution was later introduced, which advances from a set-theoretical notion of model to a -theoretical one.
Semialgebraic setIn mathematics, a semialgebraic set is a finite union of sets defined by polynomial equalities and polynomial inequalities. A semialgebraic function is a function with a semialgebraic graph. Such sets and functions are mainly studied in real algebraic geometry which is the appropriate framework for algebraic geometry over the real numbers. Let be a real closed field. (For example could be the field of real numbers .
Finite model theoryFinite model theory is a subarea of model theory. Model theory is the branch of logic which deals with the relation between a formal language (syntax) and its interpretations (semantics). Finite model theory is a restriction of model theory to interpretations on finite structures, which have a finite universe. Since many central theorems of model theory do not hold when restricted to finite structures, finite model theory is quite different from model theory in its methods of proof.