Related concepts (35)
G-parity
In particle physics, G-parity is a multiplicative quantum number that results from the generalization of C-parity to multiplets of particles. C-parity applies only to neutral systems; in the pion triplet, only π0 has C-parity. On the other hand, strong interaction does not see electrical charge, so it cannot distinguish amongst π+, π0 and π−. We can generalize the C-parity so it applies to all charge states of a given multiplet: where ηG = ±1 are the eigenvalues of G-parity.
J/psi meson
The _J/psi (J/psi) meson ˈdʒeɪ_ˈsaɪ_ˈmiːzɒn is a subatomic particle, a flavor-neutral meson consisting of a charm quark and a charm antiquark. Mesons formed by a bound state of a charm quark and a charm anti-quark are generally known as "charmonium" or psions. The _J/Psi is the most common form of charmonium, due to its spin of 1 and its low rest mass. The _J/Psi has a rest mass of 3.0969GeV/c2, just above that of the _charmed eta (2.9836GeV/c2), and a mean lifetime of 7.2e-21s.
Pseudoscalar meson
In high-energy physics, a pseudoscalar meson is a meson with total spin 0 and odd parity (usually notated as J^P = 0^− ). Pseudoscalar mesons are commonly seen in proton-proton scattering and proton-antiproton annihilation, and include the pion (π), kaon (K), eta (η), and eta prime () particles, whose masses are known with great precision. Among all of the mesons known to exist, in some sense, the pseudoscalars are the most well studied and understood.
Scalar meson
In high energy physics, a scalar meson is a meson with total spin 0 and even parity (usually noted as JP=0+). Compare to pseudoscalar meson. The first known scalar mesons have been observed since the late 1950s, with observations of numerous light states and heavier states proliferating since the 1980s. Scalar mesons are most often observed in proton-antiproton annihilation, radiative decays of vector mesons, and meson-meson scattering.
Upsilon meson
The Upsilon meson (_Upsilon) is a quarkonium state (i.e. flavourless meson) formed from a bottom quark and its antiparticle. It was discovered by the E288 experiment team, headed by Leon Lederman, at Fermilab in 1977, and was the first particle containing a bottom quark to be discovered because it is the lightest that can be produced without additional massive particles. It has a lifetime of 1.21e-20s and a mass about 9.46GeV/c2 in the ground state.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.