In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move closer to the optimal ratio of protons and neutrons. As a result of this transformation, the nucleus emits two detectable beta particles, which are electrons or positrons.
The literature distinguishes between two types of double beta decay: ordinary double beta decay and neutrinoless double beta decay. In ordinary double beta decay, which has been observed in several isotopes, two electrons and two electron antineutrinos are emitted from the decaying nucleus. In neutrinoless double beta decay, a hypothesized process that has never been observed, only electrons would be emitted.
The idea of double beta decay was first proposed by Maria Goeppert Mayer in 1935.
In 1937, Ettore Majorana demonstrated that all results of beta decay theory remain unchanged if the neutrino were its own antiparticle, now known as a Majorana particle.
In 1939, Wendell H. Furry proposed that if neutrinos are Majorana particles, then double beta decay can proceed without the emission of any neutrinos, via the process now called neutrinoless double beta decay.
It is not yet known whether the neutrino is a Majorana particle, and, relatedly, whether neutrinoless double beta decay exists in nature.
In 1930–1940s, parity violation in weak interactions was not known, and consequently calculations showed that neutrinoless double beta decay should be much more likely to occur than ordinary double beta decay, if neutrinos were Majorana particles. The predicted half-lives were on the order of ~ years. Efforts to observe the process in laboratory date back to at least 1948 when E.L. Fireman made the first attempt to directly measure the half-life of the isotope with a Geiger counter.
Radiometric experiments through about 1960 produced negative results or false positives, not confirmed by later experiments.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
:
Related courses (15)
Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the
The reactor experiments course aims to introduce the students to radiation detection techniques and nuclear reactor experiments. The core of the course is the unique opportunity to conduct reactor exp
Presentation of particle properties, their symmetries and interactions.
Introduction to quantum electrodynamics and to the Feynman rules.
The neutrinoless double beta decay (0νββ) is a commonly proposed and experimentally pursued theoretical radioactive decay process that would prove a Majorana nature of the neutrino particle. To this day, it has not been found. The discovery of the neutrinoless double beta decay could shed light on the absolute neutrino masses and on their mass hierarchy (Neutrino mass). It would mean the first ever signal of the violation of total lepton number conservation. A Majorana nature of neutrinos would confirm that the neutrino is its own antiparticle.
The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number: Z + N = A. The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2Z. Neutron number is not written explicitly in nuclide symbol notation, but can be inferred as it is the difference between the two left-hand numbers (atomic number and mass). Nuclides that have the same neutron number but different proton numbers are called isotones.
Double electron capture is a decay mode of an atomic nucleus. For a nuclide (A, Z) with a number of nucleons A and atomic number Z, double electron capture is only possible if the mass of the nuclide (A, Z−2) is lower. In this mode of decay, two of the orbital electrons are captured via the weak interaction by two protons in the nucleus, forming two neutrons (Two neutrinos are emitted in the process). Since the protons are changed to neutrons, the number of neutrons increases by two, while the number of protons Z decreases by two, and the atomic mass number A remains unchanged.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
A large variety of new physics models suggest that the rates for lepton flavour violating b-hadron decays may be much higher than predicted in the Standard Model, which leads to a high interest in the search for such decays. This thesis presents the sear ...
EPFL2024
Charge separation processes in organic semiconductors play a pivotal role in diverse applications ranging from photovoltaics to photocatalysis. Understanding these mechanisms, particularly the role of hybrid charge-transfer (CT) states, is essential for ad ...
EPFL2024
, ,
The first search for ultra-rare K+ decays into the pi(+)e(+)e(-) e(+) e(-) final state is reported, using a dataset collected by the NA62 experiment at CERN in 2017-2018. An upper limit of 1.4x10(-8) at 90% CL is obtained for the branching ratio of the K+ ...