Delay slotIn computer architecture, a delay slot is an instruction slot being executed without the effects of a preceding instruction. The most common form is a single arbitrary instruction located immediately after a branch instruction on a RISC or DSP architecture; this instruction will execute even if the preceding branch is taken. Thus, by design, the instructions appear to execute in an illogical or incorrect order. It is typical for assemblers to automatically reorder instructions by default, hiding the awkwardness from assembly developers and compilers.
Branch predictorIn computer architecture, a branch predictor is a digital circuit that tries to guess which way a branch (e.g., an if–then–else structure) will go before this is known definitively. The purpose of the branch predictor is to improve the flow in the instruction pipeline. Branch predictors play a critical role in achieving high performance in many modern pipelined microprocessor architectures. Two-way branching is usually implemented with a conditional jump instruction.
Branch (computer science)A branch is an instruction in a computer program that can cause a computer to begin executing a different instruction sequence and thus deviate from its default behavior of executing instructions in order. Branch (or branching, branched) may also refer to the act of switching execution to a different instruction sequence as a result of executing a branch instruction. Branch instructions are used to implement control flow in program loops and conditionals (i.e., executing a particular sequence of instructions only if certain conditions are satisfied).
Instruction-level parallelismInstruction-level parallelism (ILP) is the parallel or simultaneous execution of a sequence of instructions in a computer program. More specifically ILP refers to the average number of instructions run per step of this parallel execution. ILP must not be confused with concurrency. In ILP there is a single specific thread of execution of a process. On the other hand, concurrency involves the assignment of multiple threads to a CPU's core in a strict alternation, or in true parallelism if there are enough CPU cores, ideally one core for each runnable thread.
Hazard (computer architecture)In the domain of central processing unit (CPU) design, hazards are problems with the instruction pipeline in CPU microarchitectures when the next instruction cannot execute in the following clock cycle, and can potentially lead to incorrect computation results. Three common types of hazards are data hazards, structural hazards, and control hazards (branching hazards). There are several methods used to deal with hazards, including pipeline stalls/pipeline bubbling, operand forwarding, and in the case of out-of-order execution, the scoreboarding method and the Tomasulo algorithm.
Explicitly parallel instruction computingExplicitly parallel instruction computing (EPIC) is a term coined in 1997 by the HP–Intel alliance to describe a computing paradigm that researchers had been investigating since the early 1980s. This paradigm is also called Independence architectures. It was the basis for Intel and HP development of the Intel Itanium architecture, and HP later asserted that "EPIC" was merely an old term for the Itanium architecture. EPIC permits microprocessors to execute software instructions in parallel by using the compiler, rather than complex on-die circuitry, to control parallel instruction execution.
Processor registerA processor register is a quickly accessible location available to a computer's processor. Registers usually consist of a small amount of fast storage, although some registers have specific hardware functions, and may be read-only or write-only. In computer architecture, registers are typically addressed by mechanisms other than main memory, but may in some cases be assigned a memory address e.g. DEC PDP-10, ICT 1900.
IA-64IA-64 (Intel Itanium architecture) is the instruction set architecture (ISA) of the Itanium family of 64-bit Intel microprocessors. The basic ISA specification originated at Hewlett-Packard (HP), and was subsequently implemented by Intel in collaboration with HP. The first Itanium processor, codenamed Merced, was released in 2001. The Itanium architecture is based on explicit instruction-level parallelism, in which the compiler decides which instructions to execute in parallel.
Vector processorIn computing, a vector processor or array processor is a central processing unit (CPU) that implements an instruction set where its instructions are designed to operate efficiently and effectively on large one-dimensional arrays of data called vectors. This is in contrast to scalar processors, whose instructions operate on single data items only, and in contrast to some of those same scalar processors having additional single instruction, multiple data (SIMD) or SWAR Arithmetic Units.
ItaniumItanium (aɪˈteɪniəm ) is a discontinued family of 64-bit Intel microprocessors that implement the Intel Itanium architecture (formerly called IA-64). The Itanium architecture originated at Hewlett-Packard (HP), and was later jointly developed by HP and Intel. Launched in June 2001, Intel initially marketed the processors for enterprise servers and high-performance computing systems. In the concept phase, engineers said "we could run circles around PowerPC, that we could kill the x86.