In mathematics, a polynomial sequence, i.e., a sequence of polynomials indexed by non-negative integers in which the index of each polynomial equals its degree, is said to be of binomial type if it satisfies the sequence of identities
Many such sequences exist. The set of all such sequences forms a Lie group under the operation of umbral composition, explained below. Every sequence of binomial type may be expressed in terms of the Bell polynomials. Every sequence of binomial type is a Sheffer sequence (but most Sheffer sequences are not of binomial type). Polynomial sequences put on firm footing the vague 19th century notions of umbral calculus.
In consequence of this definition the binomial theorem can be stated by saying that the sequence is of binomial type.
The sequence of "lower factorials" is defined by(In the theory of special functions, this same notation denotes upper factorials, but this present usage is universal among combinatorialists.) The product is understood to be 1 if n = 0, since it is in that case an empty product. This polynomial sequence is of binomial type.
Similarly the "upper factorials"are a polynomial sequence of binomial type.
The Abel polynomialsare a polynomial sequence of binomial type.
The Touchard polynomialswhere is the number of partitions of a set of size into disjoint non-empty subsets, is a polynomial sequence of binomial type. Eric Temple Bell called these the "exponential polynomials" and that term is also sometimes seen in the literature. The coefficients are "Stirling numbers of the second kind". This sequence has a curious connection with the Poisson distribution: If is a random variable with a Poisson distribution with expected value then . In particular, when , we see that the th moment of the Poisson distribution with expected value is the number of partitions of a set of size , called the th Bell number. This fact about the th moment of that particular Poisson distribution is "Dobinski's formula".
It can be shown that a polynomial sequence { pn(x) : n = 0, 1, 2, ...
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Gian-Carlo Rota (April 27, 1932 – April 18, 1999) was an Italian-American mathematician and philosopher. He spent most of his career at the Massachusetts Institute of Technology, where he worked in combinatorics, functional analysis, probability theory, and phenomenology. Rota was born in Vigevano, Italy. His father, Giovanni, an architect and prominent antifascist, was the brother of the mathematician Rosetta, who was the wife of the writer Ennio Flaiano. Gian-Carlo's family left Italy when he was 13 years old, initially going to Switzerland.
In mathematics, a polynomial sequence is a sequence of polynomials indexed by the nonnegative integers 0, 1, 2, 3, ..., in which each index is equal to the degree of the corresponding polynomial. Polynomial sequences are a topic of interest in enumerative combinatorics and algebraic combinatorics, as well as applied mathematics. Some polynomial sequences arise in physics and approximation theory as the solutions of certain ordinary differential equations: Laguerre polynomials Chebyshev polynomials Legendre
In mathematics before the 1970s, the term umbral calculus referred to the surprising similarity between seemingly unrelated polynomial equations and certain shadowy techniques used to "prove" them. These techniques were introduced by John Blissard and are sometimes called Blissard's symbolic method. They are often attributed to Édouard Lucas (or James Joseph Sylvester), who used the technique extensively. In the 1930s and 1940s, Eric Temple Bell attempted to set the umbral calculus on a rigorous footing.
Consider a max-stable process of the form , , where are points of the Poisson process with intensity u (-2)du on (0,a), X (i) , , are independent copies of a random d-variate vector X (that are independent of the Poisson process), and is a function. We sho ...
Exponential-polynomial families like the Nelson-Siegel or Svensson family are widely used to estimate the current forward rate curve. We investigate whether these methods go well with inter-temporal modelling. We characterize the consistent Ito processes w ...
Bernoulli Society for Mathematical Statistics and Probability2000