Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In network semi-supervised learning problems, only a subset of the network nodes is able to access the data labeling. This paper formulates a decentralized optimization problem where agents have individual decision rules to estimate, subject to the conditi ...
As distribution shifts are inescapable in realistic clinical scenarios due to inconsistencies in imaging protocols, scanner vendors, and across different centers, well-trained deep models incur a domain generalization problem in unseen environments. Despit ...
The goal of this thesis is to study continuous-domain inverse problems for the reconstruction of sparse signals and to develop efficient algorithms to solve such problems computationally. The task is to recover a signal of interest as a continuous function ...
Strategic information is valuable either by remaining private (for instance if it is sensitive) or, on the other hand, by being used publicly to increase some utility. These two objectives are antagonistic and leaking this information by taking full advant ...
The purpose of this article is to develop and study a decentralized strategy for Pareto optimization of an aggregate cost consisting of regularized risks. Each risk is modeled as the expectation of some loss function with unknown probability distribution, ...
Neural-network quantum states (NQS) have been shown to be a suitable variational ansatz to simulate out-of-equilibrium dynamics in two-dimensional systems using timedependent variational Monte Carlo (t-VMC). In particular, stable and accurate time propagat ...
Reconstructing lens potentials and lensed sources can easily become an underconstrained problem, even when the degrees of freedom are low, due to degeneracies, particularly when potential perturbations superimposed on a smooth lens are included. Regulariza ...
A computer-implemented method for reconstructing/recovering high-resolution visible light spectral data at a target resolution d, that comprises obtaining a configuration of a low- resolution multi-channel imaging sensor of resolution p, the configuration ...
One of the main goal of Artificial Intelligence is to develop models capable of providing valuable predictions in real-world environments. In particular, Machine Learning (ML) seeks to design such models by learning from examples coming from this same envi ...
We develop a novel 2D functional learning framework that employs a sparsity-promoting regularization based on second-order derivatives. Motivated by the nature of the regularizer, we restrict the search space to the span of piecewise-linear box splines shi ...