Luc ThévenazLuc Thévenaz received in 1982 the M.Sc. degree in astrophysics from the Observatory of Geneva, Switzerland, and in 1988 the Ph.D. degree in physics from the University of Geneva, Switzerland. He developed at this moment his field of expertise, i.e. fibre optics. In 1988 he joined the Swiss Federal Institute of Technology of Lausanne (EPFL) where he currently leads a research group involved in photonics, namely fibre optics and optical sensing. Research topics include Brillouin-scattering fibre sensors, nonlinear fibre optics, slow & fast light and laser spectroscopy in gases. His main achievements are: - the invention of a novel configuration for distributed Brillouin fibre sensing based on a single laser source, resulting in a high intrinsic stability making for the first time field measurements possible, - the development of a photoacoustic gas trace sensor using a near infra-red semiconductor laser, detecting a gas concentration at the ppb level, - the first experimental demonstration of optically-controlled slow & fast light in optical fibres, realized at ambient temperature and operating at any wavelength since based on stimulated Brillouin scattering. The first negative group velocity of light was also realized in optical fibres using this approach. In 1991, he visited the PUC University in Rio de Janeiro, Brazil where he worked on the generation of picosecond pulses in semiconductor lasers. In 1991-1992 he stayed at Stanford University, USA, where he participated in the development of a Brillouin laser gyroscope. He joined in 1998 the company Orbisphere Laboratories SA in Neuchâtel, Switzerland, as Expert Scientist to develop gas trace sensors based on photoacoustic laser spectroscopy. In 1998 and 1999 he visited the Korea Advanced Institute of Science and Technology (KAIST) in Daejon, South Korea, where he worked on fibre laser current sensors. In 2000 he co-founded the spin-off company Omnisens that is developing and commercializing advanced photonic instrumentation. In 2007 he visited Tel Aviv University where he studied the all-optical control of polarization in optical fibres. During winter 2010 he stayed at the University of Sydney where he studied applications of stimulated Brillouin scattering in chalcogenide waveguides. In 2014 he stayed at the Polytechnic University of Valencia where he worked on microwave applications of stimulated Brillouin scattering. He was member of the Consortium in the FP7 European Project GOSPEL "Governing the speed of light", was Chairman of the European COST Action 299 "FIDES: Optical Fibres for New Challenges Facing the Information Society" and is author or co-author of some 480 publications and 12 patents. He is now Coordinator of the H2020 Marie Skłodowska-Curie Innovative Training Networks FINESSE (FIbre NErve Systems for Sensing). He is co-Executive Editor-in-Chief of the journal "Nature Light: Science & Applications" and is Member of the Editorial Board (Associate Editor) for the journal "APL Photonics" & "Laser & Photonics Reviews". He is also Fellow of both the IEEE and the Optical Society (OSA).
Jean-Philippe AnsermetJean-Philippe Ansermet was born March 1, 1957 in Lausanne (legal origin Vaumarcus, NE). He obtained a diploma as physics engineer of EPFL in 1980. He went on to get a PhD from the University of Illinois at Urbana-Champaign where, from 1985 to 1987, he persued as post-doc with Prof. Slichter his research on catalysis by solid state NMR studies of molecules bound to the surface of catalysts. From 1987 to 1992 he worked at the materials research center of Ciba-Geigy, on polymers for microelectronics, composites, dielectrics and organic charge transfer complexes. In March 1992, as professor of experimental physics, he developed a laboratory on the theme of nanostructured materials and turned full professor in 1995. Since 1992, he teaches classical mechanics, first to future engineering students, since 2004 to physics majors. Since 2000, he teaches thermodynamics also, to the same group of students. He offers a graduate course in spintronics, and another on spin dynamics. His research activities concern the fabrication and properties of magnetic nanostructures produced by electrodeposition. His involvement since the early days of spintronics have allowed him to gain recognition for his work on giant magnetoresistance (CPP-GMR), magnetic relaxation of single nanostructures, and was among the leading groups demonstrating magnetization reversal by spin-polarized currents. Furthermore, his group uses nuclear magnetic resonance , on the one hand as means of investigation of surfaces and electrodes, on the other hand, as a local probe of the electronic properties of complex ferromagnetic oxides.
Pasquale ScarlinoI obtained my master's degree in Physics at the University of Salento, Lecce (Italy) in February 2011. During 2006-2011, I have also been a student of Scuola Superiore ISUFI (SSI). SSI is one of six schools of excellence established in Italy to develop the intellectual capital in technological and social sciences. I conducted an external Master thesis project during an 8 months internship in the Quantum Transport Group at TU Delft, under the supervision of Prof. L.M.K. Vandersypen. There, I implemented the Quantum Point Contact Radio-Frequency Reflectometry technique, which allows increasing the single-shot electron spin readout bandwidth and is currently routinely used in the group.I obtained my Ph.D. degree in February 2016, in the Spin Qubits group of Prof. L.M.K. Vandersypen at the Kavli Institute of Nanoscience-Qutech (TU Delft). During my Ph.D. I have been leading the Si/SiGe spin qubits project, collaborating with the M. Eriksson Group at Wisconsin University. In parallel, I have been working on other different projects, in particular with GaAs depletion quantum dots, high impedance superconducting resonators, and surface acoustic wave resonators. I have been working as a Postdoc fellow in the group of Prof. A. Wallraff (Quantum Device Lab) at ETH Zurich. My main project, in collaboration with the group of Prof. K. Ensslin and Prof. T. Ihn, consisted in integrating semiconductor and superconductor technologies. Realizing a well-controlled interface between the semiconductor and superconductor-based quantum information technologies may allow harnessing the best of both device architectures, for example by providing an interface between strongly coupled charge state and high coherence spin states. Furthermore, it enables the possibility to explore light/matter hybridization in a class of solid-state systems and regimes that are new in the context of quantum optics.From June 2019 till September 2020, I have been a Senior Researcher at Microsoft Station Q Copenhagen and at the Center for Quantum Devices in Copenhagen, focusing on developing semiconductor-superconducting hybrid hardware for topologically protected quantum computation.Since October 2020, I am a tenure track Assistant Professor of Physics in the School of Basic Sciences at the EPFL where I founded the Hybrid Quantum Circuit (HQC) laboratory.