The Alpha 21064 is a microprocessor developed and fabricated by Digital Equipment Corporation that implemented the Alpha (introduced as the Alpha AXP) instruction set architecture (ISA). It was introduced as the DECchip 21064 before it was renamed in 1994. The 21064 is also known by its code name, EV4. It was announced in February 1992 with volume availability in September 1992. The 21064 was the first commercial implementation of the Alpha ISA, and the first microprocessor from Digital to be available commercially. It was succeeded by a derivative, the Alpha 21064A in October 1993. This last version was replaced by the Alpha 21164 in 1995.
The first Alpha processor was a test chip codenamed EV3. This test chip was fabricated using Digital's 1.0-micrometre (μm) CMOS-3 process. The test chip lacked a floating point unit and only had 1 KB caches. The test chip was used to confirm the operation of the aggressive circuit design techniques. The test chip, along with simulators and emulators, was also used to bring up firmware and the various operating systems that the company supported.
The production chip, codenamed EV4, was fabricated using Digital's 0.75 μm CMOS-4 process. Dirk Meyer and Edward McLellan were the micro-architects. Ed designed the issue logic while Dirk designed the other major blocks. Jim Montanaro led the circuit implementation. The EV3 was used in the Alpha Demonstration Unit (ADU), a multiprocessor system used by Digital to develop software for the Alpha platform before the availability of EV4 parts.
The 21064 was unveiled at the 39th International Solid-State Circuits Conference (ISSCC) in mid-February 1992. It was announced on 25 February 1992, with a 150 MHz sample introduced on the same day. It was priced at 3,375inquantitiesof100,1,650 in quantities between 100 and 1,000, and 1,560forquantitiesover1,000.VolumeshipmentsbeganinSeptember1992.InearlyFebruary1993,thepriceofthe150MHzversionwasreducedto1,096 from $1,559 in quantities greater than 1,000.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
The Alpha 21164, also known by its code name, EV5, is a microprocessor developed and fabricated by Digital Equipment Corporation that implemented the Alpha instruction set architecture (ISA). It was introduced in January 1995, succeeding the Alpha 21064A as Digital's flagship microprocessor. It was succeeded by the Alpha 21264 in 1998. First silicon of the Alpha 21164 was produced in February 1994, and the OpenVMS, Digital UNIX and Windows NT operating systems were successfully booted on it.
AlphaStation is the name given to a series of computer workstations, produced from 1994 onwards by Digital Equipment Corporation, and later by Compaq and HP. As the name suggests, the AlphaStations were based on the DEC Alpha 64-bit microprocessor. Supported operating systems for AlphaStations comprise Tru64 UNIX (formerly Digital UNIX), OpenVMS and Windows NT (with AlphaBIOS ARC firmware). Most of these workstations can also run various versions of Linux and BSD operating systems.
The Alpha 21264 is a Digital Equipment Corporation RISC microprocessor launched on 19 October 1998. The 21264 implemented the Alpha instruction set architecture (ISA). The Alpha 21264 is a four-issue superscalar microprocessor with out-of-order execution and speculative execution. It has a peak execution rate of six instructions per cycle and could sustain four instructions per cycle. It has a seven-stage instruction pipeline. At any given stage, the microprocessor could have up to 80 instructions in various stages of execution, surpassing any other contemporary microprocessor.
Virtual memory (VM) is critical to the usability and programmability of hardware accelerators. Unfortunately, implementing accelerator VM efficiently is challenging because the area and power constraints make it difficult to employ the large multi-level TL ...
Density, speed and energy efficiency of integrated circuits have been increasing exponentially for the last four decades following Moore's law. However, power and reliability pose several challenges to the future of technology scaling. Approximate computin ...
EPFL2019
,
In a drive to maximize resource utilization, today's datacenters are moving to colocation of latency-sensitive and batch workloads on the same server. State-of-the-art deployments, such as those at Google, colocate such diverse workloads even on a single S ...