Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principally used for producing ammonia or methanol. Syngas is combustible and can be used as a fuel. Historically, it has been used as a replacement for gasoline, when gasoline supply has been limited; for example, wood gas was used to power cars in Europe during WWII (in Germany alone half a million cars were built or rebuilt to run on wood gas).
Syngas is produced by steam reforming or partial oxidation of natural gas or liquid hydrocarbons, or coal gasification. Steam reforming of methane is an endothermic reaction requiring 206 kJ/mol of methane:
In principle, but rarely in practice, biomass and related hydrocarbon feedstocks could be used to generate biogas and biochar in waste-to-energy gasification facilities. The gas generated (mostly methane and carbon dioxide) is sometimes described as syngas but its composition differs from syngas. Generation of conventional syngas (mostly H2 and CO) from waste biomass has been explored.
The chemical composition of syngas varies based on the raw materials and the processes. Syngas produced by coal gasification generally is a mixture of 30 to 60% carbon monoxide, 25 to 30% hydrogen, 5 to 15% carbon dioxide, and 0 to 5% methane. It also contains lesser amount of other gases. Syngas has less than half the energy density of natural gas.
The first reaction, between incandescent coke and steam, is strongly endothermic, producing carbon monoxide (CO), and hydrogen H2 (water gas in older terminology). When the coke bed has cooled to a temperature at which the endothermic reaction can no longer proceed, the steam is then replaced by a blast of air.
The second and third reactions then take place, producing an exothermic reaction—forming initially carbon dioxide and raising the temperature of the coke bed—followed by the second endothermic reaction, in which the latter is converted to carbon monoxide.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course is an introduction to heterogeneous catalysis for environmental protection and energy production. It focusses on catalytic exhaust gas cleaning as well as catalytic systems relevant for gas
Methane (USˈmɛθeɪn , UKˈmiːθeɪn ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it poses technical challenges due to its gaseous state under normal conditions for temperature and pressure. Naturally occurring methane is found both below ground and under the seafloor and is formed by both geological and biological processes.
Steam reforming or steam methane reforming (SMR) is a method for producing syngas (hydrogen and carbon monoxide) by reaction of hydrocarbons with water. Commonly natural gas is the feedstock. The main purpose of this technology is hydrogen production. The reaction is represented by this equilibrium: CH4 + H2O CO + 3 H2 The reaction is strongly endothermic (ΔHSR = 206 kJ/mol). Hydrogen produced by steam reforming is termed 'grey hydrogen' when the waste carbon monoxide is released to the atmosphere and 'blue hydrogen' when the carbon monoxide is (mostly) captured and stored geologically - see carbon capture and storage.
The water–gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen: CO + H2O CO2 + H2 The water gas shift reaction was discovered by Italian physicist Felice Fontana in 1780. It was not until much later that the industrial value of this reaction was realized. Before the early 20th century, hydrogen was obtained by reacting steam under high pressure with iron to produce iron oxide and hydrogen.
Hydrogen (H-2) has been widely considered the clean energy carrier of choice for emerging renewable energy generation technologies. However, H-2 is a secondary fuel mainly derived from natural gas. Over the past decades, research on developing H-2 producti ...
The reduction of carbon dioxide to desirable products is an urgent goal in favour of the environment, the energy-cycle and mankind. We report the electrochemical reduction of CO2 to carbon monoxide by means of the ho-mogeneous electrocatalyst (1), [Ru(bpy) ...
A few seconds flash photopyrolysis is used as efficient screening tool for the investigation of selected biomass in producing syngas, hydrogen and biochar. This innovative approach allowed rapid pyrolysis of the biomass, which was followed by a precise gas ...