Tin(II) chloride, also known as stannous chloride, is a white crystalline solid with the formula . It forms a stable dihydrate, but aqueous solutions tend to undergo hydrolysis, particularly if hot. SnCl2 is widely used as a reducing agent (in acid solution), and in electrolytic baths for tin-plating. Tin(II) chloride should not be confused with the other chloride of tin; tin(IV) chloride or stannic chloride (SnCl4).
SnCl2 has a lone pair of electrons, such that the molecule in the gas phase is bent. In the solid state, crystalline SnCl2 forms chains linked via chloride bridges as shown. The dihydrate has three coordinates as well, with one water on the tin and another water on the first. The main part of the molecule stacks into double layers in the crystal lattice, with the "second" water sandwiched between the layers.
Tin(II) chloride can dissolve in less than its own mass of water without apparent decomposition, but as the solution is diluted, hydrolysis occurs to form an insoluble basic salt:
SnCl2 (aq) + H2O (l) Sn(OH)Cl (s) + HCl (aq)
Therefore, if clear solutions of tin(II) chloride are to be used, it must be dissolved in hydrochloric acid (typically of the same or greater molarity as the stannous chloride) to maintain the equilibrium towards the left-hand side (using Le Chatelier's principle). Solutions of SnCl2 are also unstable towards oxidation by the air:
6 SnCl2 (aq) + O2 (g) + 2 H2O (l) → 2 SnCl4 (aq) + 4 Sn(OH)Cl (s)
This can be prevented by storing the solution over lumps of tin metal.
There are many such cases where tin(II) chloride acts as a reducing agent, reducing silver and gold salts to the metal, and iron(III) salts to iron(II), for example:
SnCl2 (aq) + 2 FeCl3 (aq) → SnCl4 (aq) + 2 FeCl2 (aq)
It also reduces copper(II) to copper(I).
Solutions of tin(II) chloride can also serve simply as a source of Sn2+ ions, which can form other tin(II) compounds via precipitation reactions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The cochineal (ˌkɒtʃɪˈni:l,_ˈkɒtʃɪni:l , USalsoˌkoʊtʃɪˈni:l,_ˈkoʊtʃɪni:l ; Dactylopius coccus) is a scale insect in the suborder Sternorrhyncha, from which the natural dye carmine is derived. A primarily sessile parasite native to tropical and subtropical South America through North America (Mexico and the Southwest United States), this insect lives on cacti in the genus Opuntia, feeding on plant moisture and nutrients. The insects are found on the pads of prickly pear cacti, collected by brushing them off the plants, and dried.
Explores the sustainability of energy systems, the transition to a material-intensive energy system, and the importance of critical minerals in the energy transition.
The objective of this study was to analyze the behavior of a new material, silver-doped polymeric cloth (Ag-cloth), in the removal of bromide and iodide from waters. Silver is immobilized on the cloth, guaranteeing selective adsorption of the halide ions a ...
Elsevier2016
,
Neutral dinuclear dithiolato-bridged pentamethylcyclopentadienyl Rh(III) complexes of the type (C5Me5)(2)Rh-2(mu-SR)(2)Cl-2 (R = CH2Ph, 1; R = CH2CH2Ph, 2) and cationic dinuclear trithiolato-bridged pentamethylcyclopentadienyl Rh(III) and Ir(III) complexes ...
Silver nanoparticles used in consumer products are likely to be released into municipal wastewater. Transformation reactions, most importantly sulfidation, lead to the formation of nanoscale silver sulfide (nano-Ag2S) particles. In wastewater treatment pla ...