The Motorola 68000 (sometimes shortened to Motorola 68k or m68k and usually pronounced "sixty-eight-thousand") is a 16/32-bit complex instruction set computer (CISC) microprocessor, introduced in 1979 by Motorola Semiconductor Products Sector.
The design implements a 32-bit instruction set, with 32-bit registers and a 16-bit internal data bus. The address bus is 24 bits and does not use memory segmentation, which made it easier to program for. Internally, it uses a 16-bit data arithmetic logic unit (ALU) and two more 16-bit ALUs used mostly for addresses, and has a 16-bit external data bus. For this reason, Motorola termed it a 16/32-bit processor.
As one of the first widely available processors with a 32-bit instruction set, large unsegmented address space, and relatively high speed for the era, the 68k was a popular design through the 1980s. It was widely used in a new generation of personal computers with graphical user interfaces, including the Macintosh 128K, Commodore Amiga, Atari ST, and Sharp X68000. The 1988 Sega Genesis/Mega Drive console is powered by a 68000.
Later processors in the Motorola 68000 series, beginning with the Motorola 68020, use full 32-bit ALUs and have full 32-bit address and data buses, speeding up 32-bit operations and allowing full 32-bit addressing rather than the 24-bit addressing of the 68000 and Motorola 68010 or the 31-bit addressing of the Motorola 68012. The original 68k is generally software forward-compatible with the rest of the line despite being limited to a 16-bit wide external bus.
After in production, the 68000 architecture is still in use.
Motorola 6800
Motorola's first widely produced microprocessor was the 6800, introduced in early 1974 and available in quantity late that year. The company set itself the goal of selling 25,000 units by September 1976, a goal they did meet. Although a capable design, it was eclipsed by more powerful designs, such as the Zilog Z80, and less expensive designs, such as the MOS Technology 6502.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These programs enable computers to perform a wide range of tasks. A computer system is a nominally complete computer that includes the hardware, operating system (main software), and peripheral equipment needed and used for full operation.
The PDP–11 is a series of 16-bit minicomputers sold by Digital Equipment Corporation (DEC) from 1970 into the late 1990s, one of a set of products in the Programmed Data Processor (PDP) series. In total, around 600,000 PDP-11s of all models were sold, making it one of DEC's most successful product lines. The PDP-11 is considered by some experts to be the most popular minicomputer. The PDP–11 included a number of innovative features in its instruction set and additional general-purpose registers that made it easier to program than earlier models in the PDP series.
The Z80 is an 8-bit microprocessor introduced by Zilog as the startup company's first product. The Z80 was conceived by Federico Faggin in late 1974 and developed by him and his 11 employees starting in early 1975. The first working samples were delivered in March 1976, and it was officially introduced on the market in July 1976. With the revenue from the Z80, the company built its own chip factories and grew to over a thousand employees over the following two years.
The course introduces the students to the basic notions
of computer architecture and, in particular, to the
choices of the Instruction Set Architecture and to the
memory hierarchy of modern systems.
Logic synthesis is a key component of digital design and modern EDA tools; it is thus an essential instrument for the design of leading-edge chips and to push the limits of their performance. In the last decades, the electronic circuits community has evolv ...
EPFL2020
Utilization of edge devices has exploded in the last decade, with such use cases as wearable devices, autonomous driving, and smart homes. As their ubiquity grows, so do expectations of their capabilities. Simultaneously, their formfactor and use cases lim ...
EPFL2022
,
Fully-Homomorphic Encryption (FHE) offers powerful capabilities by enabling secure offloading of both storage and computation, and recent innovations in schemes and implementations have made it all the more attractive. At the same time, FHE is notoriously ...