Covariant derivativeIn mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space.
Divergence theoremIn vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem which relates the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed. More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface, which is called the "flux" through the surface, is equal to the volume integral of the divergence over the region inside the surface.
Abstract index notationAbstract index notation (also referred to as slot-naming index notation) is a mathematical notation for tensors and spinors that uses indices to indicate their types, rather than their components in a particular basis. The indices are mere placeholders, not related to any basis and, in particular, are non-numerical. Thus it should not be confused with the Ricci calculus.
DyadicsIn mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra. There are numerous ways to multiply two Euclidean vectors. The dot product takes in two vectors and returns a scalar, while the cross product returns a pseudovector. Both of these have various significant geometric interpretations and are widely used in mathematics, physics, and engineering. The dyadic product takes in two vectors and returns a second order tensor called a dyadic in this context.
Multilinear algebraMultilinear algebra is a branch of mathematics that expands upon the principles of linear algebra. It extends the foundational theory of vector spaces by introducing the concepts of p-vectors and multivectors using Grassmann algebras. In a vector space of dimension n, the focus is primarily on using vectors. However, Hermann Grassmann and others emphasized the importance of considering the structures of pairs, triplets, and general multi-vectors, which offer a more comprehensive perspective.
Lie derivativeIn differential geometry, the Lie derivative (liː ), named after Sophus Lie by Władysław Ślebodziński, evaluates the change of a tensor field (including scalar functions, vector fields and one-forms), along the flow defined by another vector field. This change is coordinate invariant and therefore the Lie derivative is defined on any differentiable manifold. Functions, tensor fields and forms can be differentiated with respect to a vector field. If T is a tensor field and X is a vector field, then the Lie derivative of T with respect to X is denoted .
Tensor product of modulesIn mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g. multiplication) to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group.
Musical isomorphismIn mathematics—more specifically, in differential geometry—the musical isomorphism (or canonical isomorphism) is an isomorphism between the tangent bundle and the cotangent bundle of a pseudo-Riemannian manifold induced by its metric tensor. There are similar isomorphisms on symplectic manifolds. The term musical refers to the use of the symbols (flat) and (sharp). In the notation of Ricci calculus, it is also known as raising and lowering indices.
Antisymmetric tensorIn mathematics and theoretical physics, a tensor is antisymmetric on (or with respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged. The index subset must generally either be all covariant or all contravariant. For example, holds when the tensor is antisymmetric with respect to its first three indices. If a tensor changes sign under exchange of each pair of its indices, then the tensor is completely (or totally) antisymmetric.
Mixed tensorIn tensor analysis, a mixed tensor is a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a superscript (contravariant). A mixed tensor of type or valence , also written "type (M, N)", with both M > 0 and N > 0, is a tensor which has M contravariant indices and N covariant indices. Such a tensor can be defined as a linear function which maps an (M + N)-tuple of M one-forms and N vectors to a scalar.