**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Tensor product of modules

Summary

In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g. multiplication) to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.
pairing
For a ring R, a right R-module M, a left R-module N, and an abelian group G, a map φ: M × N → G is said to be R-balanced, R-middle-linear or an R-balanced product if for all m, m′ in M, n, n′ in N, and r in R the following hold:
The set of all such balanced products over R from M × N to G is denoted by LR(M, N; G).
If φ, ψ are balanced products, then each of the operations φ + ψ and −φ defined pointwise is a balanced product. This turns the set LR(M, N; G) into an abelian group.
For M and N fixed, the map G ↦ LR(M, N; G) is a functor from the to itself. The morphism part is given by mapping a group homomorphism g : G → G′ to the function φ ↦ g ∘ φ, which goes from LR(M, N; G) to LR(M, N; G′).
Remarks
Properties (Dl) and (Dr) express biadditivity of φ, which may be regarded as distributivity of φ over addition.
Property (A) resembles some associative property of φ.
Every ring R is an R-bimodule. So the ring multiplication (r, r′) ↦ r ⋅ r′ in R is an R-balanced product R × R → R.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (86)

Related people (28)

Related units (1)

Related concepts (18)

Related courses (17)

Related lectures (58)

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

CS-308: Introduction to quantum computation

The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch

MATH-334: Representation theory

Study the basics of representation theory of groups and associative algebras.

Category of modules

In algebra, given a ring R, the category of left modules over R is the whose are all left modules over R and whose morphisms are all module homomorphisms between left R-modules. For example, when R is the ring of integers Z, it is the same thing as the . The category of right modules is defined in a similar way. One can also define the category of bimodules over a ring R but that category is equivalent to the category of left (or right) modules over the enveloping algebra of R (or over the opposite of that).

Grothendieck group

In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in , introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory.

Bimodule

In abstract algebra, a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible. Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in the sense that many of the relationships between left and right modules become simpler when they are expressed in terms of bimodules. If R and S are two rings, then an R-S-bimodule is an abelian group such that: M is a left R-module and a right S-module.

Group Cohomology

Covers the concept of group cohomology, focusing on chain complexes, cochain complexes, cup products, and group rings.

Algebraic Kunneth Theorem

Covers the Algebraic Kunneth Theorem, explaining chain complexes and cohomology computations.

Cross Product in Cohomology

Explores the cross product in cohomology, covering its properties and applications in homotopy.

Isogeometric analysis is a powerful paradigm which exploits the high smoothness of splines for the numerical solution of high order partial differential equations. However, the tensor-product structure of standard multivariate B-spline models is not well s ...

,

A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...

Motion forecasting is crucial in enabling autonomous vehicles to anticipate the future trajectories of surrounding agents. To do so, it requires solving mapping, detection, tracking, and then forecasting problems, in a multi-step pipeline. In this complex ...

2024