Summary
In physical organic chemistry, a free-energy relationship or Gibbs energy relation relates the logarithm of a reaction rate constant or equilibrium constant for one series of chemical reactions with the logarithm of the rate or equilibrium constant for a related series of reactions. Free energy relationships establish the extent at which bond formation and breakage happen in the transition state of a reaction, and in combination with kinetic isotope experiments a reaction mechanism can be determined. Free energy relationships are often used to calculate equilibrium constants since they are experimentally difficult to determine. The most common form of free-energy relationships are linear free-energy relationships (LFER). The Brønsted catalysis equation describes the relationship between the ionization constant of a series of catalysts and the reaction rate constant for a reaction on which the catalyst operates. The Hammett equation predicts the equilibrium constant or reaction rate of a reaction from a substituent constant and a reaction type constant. The Edwards equation relates the nucleophilic power to polarisability and basicity. The Marcus equation is an example of a quadratic free-energy relationship (QFER). IUPAC has suggested that this name should be replaced by linear Gibbs energy relation, but at present there is little sign of acceptance of this change. The area of physical organic chemistry which deals with such relations is commonly referred to as 'linear free-energy relationships'. LFER solvent coefficients (data page) A typical LFER relation for predicting the equilibrium concentration of a compound or solute in the vapor phase to a condensed (or solvent) phase can be defined as follows (following M.H. Abraham and co-workers): where SP is some free-energy related property, such as an adsorption or absorption constant, log K, anesthetic potency, etc. The lowercase letters (e, s, a, b, l) are system constants describing the contribution of the aerosol phase to the sorption process.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.