Projective Hilbert spaceIn mathematics and the foundations of quantum mechanics, the projective Hilbert space of a complex Hilbert space is the set of equivalence classes of non-zero vectors in , for the relation on given by if and only if for some non-zero complex number . The equivalence classes of for the relation are also called rays or projective rays. This is the usual construction of projectivization, applied to a complex Hilbert space. The physical significance of the projective Hilbert space is that in quantum theory, the wave functions and represent the same physical state, for any .
Haag's theoremWhile working on the mathematical physics of an interacting, relativistic, quantum field theory, Rudolf Haag developed an argument against the existence of the interaction picture, a result now commonly known as Haag’s theorem. Haag’s original proof relied on the specific form of then-common field theories, but subsequently generalized by a number of authors, notably Hall & Wightman, who concluded that no single, universal Hilbert space representation can describe both free and interacting fields.
Sequentially compact spaceIn mathematics, a topological space X is sequentially compact if every sequence of points in X has a convergent subsequence converging to a point in . Every metric space is naturally a topological space, and for metric spaces, the notions of compactness and sequential compactness are equivalent (if one assumes countable choice). However, there exist sequentially compact topological spaces that are not compact, and compact topological spaces that are not sequentially compact.
Borel functional calculusIn functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus (that is, an assignment of operators from commutative algebras to functions defined on their spectra), which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function s → s2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential The 'scope' here means the kind of function of an operator which is allowed.
Stone's theorem on one-parameter unitary groupsIn mathematics, Stone's theorem on one-parameter unitary groups is a basic theorem of functional analysis that establishes a one-to-one correspondence between self-adjoint operators on a Hilbert space and one-parameter families of unitary operators that are strongly continuous, i.e., and are homomorphisms, i.e., Such one-parameter families are ordinarily referred to as strongly continuous one-parameter unitary groups.
Quotient space (linear algebra)In linear algebra, the quotient of a vector space by a subspace is a vector space obtained by "collapsing" to zero. The space obtained is called a quotient space and is denoted (read " mod " or " by "). Formally, the construction is as follows. Let be a vector space over a field , and let be a subspace of . We define an equivalence relation on by stating that if . That is, is related to if one can be obtained from the other by adding an element of .
Uniformly convex spaceIn mathematics, uniformly convex spaces (or uniformly rotund spaces) are common examples of reflexive Banach spaces. The concept of uniform convexity was first introduced by James A. Clarkson in 1936. A uniformly convex space is a normed vector space such that, for every there is some such that for any two vectors with and the condition implies that: Intuitively, the center of a line segment inside the unit ball must lie deep inside the unit ball unless the segment is short.
Calkin algebraIn functional analysis, the Calkin algebra, named after John Williams Calkin, is the quotient of B(H), the ring of bounded linear operators on a separable infinite-dimensional Hilbert space H, by the ideal K(H) of compact operators. Here the addition in B(H) is addition of operators and the multiplication in B(H) is composition of operators; it is easy to verify that these operations make B(H) into a ring. When scalar multiplication is also included, B(H) becomes in fact an algebra over the same field over which H is a Hilbert space.
State space (physics)In physics, a state space is an abstract space in which different "positions" represent, not literal locations, but rather states of some physical system. This makes it a type of phase space. Specifically, in quantum mechanics a state space is a complex Hilbert space in which each unit vector represents a different state that could come out of a measurement. Each unit vector specifies a different dimension, so the numbers of dimensions in this Hilbert space depends on the system we choose to describe.
Pseudo-differential operatorIn mathematical analysis a pseudo-differential operator is an extension of the concept of differential operator. Pseudo-differential operators are used extensively in the theory of partial differential equations and quantum field theory, e.g. in mathematical models that include ultrametric pseudo-differential equations in a non-Archimedean space. The study of pseudo-differential operators began in the mid 1960s with the work of Kohn, Nirenberg, Hörmander, Unterberger and Bokobza.