In computer networking, the maximum transmission unit (MTU) is the size of the largest protocol data unit (PDU) that can be communicated in a single network layer transaction. The MTU relates to, but is not identical to the maximum frame size that can be transported on the data link layer, e.g. Ethernet frame. Larger MTU is associated with reduced overhead. Smaller MTU values can reduce network delay. In many cases, MTU is dependent on underlying network capabilities and must be adjusted manually or automatically so as to not exceed these capabilities. MTU parameters may appear in association with a communications interface or standard. Some systems may decide MTU at connect time, e.g. using Path MTU Discovery. MTUs apply to communications protocols and network layers. The MTU is specified in terms of bytes or octets of the largest PDU that the layer can pass onwards. MTU parameters usually appear in association with a communications interface (NIC, serial port, etc.). Standards (Ethernet, for example) can fix the size of an MTU; or systems (such as point-to-point serial links) may decide MTU at connect time. Underlying data link and physical layers usually add overhead to the network layer data to be transported, so for a given maximum frame size of a medium, one needs to subtract the amount of overhead to calculate that medium's MTU. For example, with Ethernet, the maximum frame size is 1518 bytes, 18 bytes of which are overhead (header and frame check sequence), resulting in an MTU of 1500 bytes. A larger MTU brings greater efficiency because each network packet carries more user data while protocol overheads, such as headers or underlying per-packet delays, remain fixed; the resulting higher efficiency means an improvement in bulk protocol throughput. A larger MTU also requires processing of fewer packets for the same amount of data. In some systems, per-packet-processing can be a critical performance limitation. However, this gain is not without a downside.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (18)
Network Security: Denial of Service
Explores Denial of Service attacks, prevention techniques, and various attack examples in network security.
Matroids: Matroid Intersection
Covers the concept of matroids, focusing on matroid intersection and the properties of subsets of a ground set.
Telecommand System Requirements
Covers the requirements and functions of a telecommand system in spacecraft, including uploading programs and controlling spacecraft operations.
Show more
Related publications (37)

Piezoelectric Grippers for Mobile Micromanipulation

Tristan Abondance, Kaushik Jayaram

The ability to efficiently and precisely manipulate objects in inaccessible environments is becoming an essential requirement for many applications of mobile robots, particularly at small sizes. Here, we propose and implement a mobile micromanipulation sol ...
2020

Avoiding long Berge cycles: the missing casesk=r+1 andk=r+2

Abhishek Methuku

The maximum size of anr-uniform hypergraph without a Berge cycle of length at leastkhas been determined for allk >= r+ 3 by Furedi, Kostochka and Luo and fork
2020

Destination buffer analysis for packets rejection obliteration in multi-channel networks

Georgia Fragkouli

In this paper we study a multi-channel network, each station of which is equipped with a network interface that has a receiver buffer of multiple packets. In this way, each station is able to receive multiple packets per time instant. We adopt a synchronou ...
2019
Show more
Related concepts (20)
OSI model
The Open Systems Interconnection model (OSI model) is a conceptual model from the International Organization for Standardization (ISO) that "provides a common basis for the coordination of standards development for the purpose of systems interconnection." In the OSI reference model, the communications between a computing system are split into seven different abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.
Transmission Control Protocol
The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and rely on TCP, which is part of the Transport Layer of the TCP/IP suite.
Computer network
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialized or general-purpose hosts.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.