Martian soil is the fine regolith (a blanket of unconsolidated, loose, heterogeneous superficial deposits covering solid rock) found on the surface of Mars. Its properties can differ significantly from those of terrestrial soil, including its toxicity due to the presence of perchlorates. The term Martian soil typically refers to the finer fraction of regolith. So far, no samples have been returned to Earth, the goal of a Mars sample-return mission, but the soil has been studied remotely with the use of Mars rovers and Mars orbiters.
On Earth, the term "soil" usually includes organic content. In contrast, planetary scientists adopt a functional definition of soil to distinguish it from rocks. Rocks generally refer to 10 cm scale and larger materials (e.g., fragments, breccia, and exposed outcrops) with high thermal inertia, with areal fractions consistent with the Viking Infrared Thermal Mapper (IRTM) data, and immobile under current aeolian (wind) conditions. Consequently, rocks classify as grains exceeding the size of cobbles on the Wentworth scale.
This approach enables agreement across Martian remote sensing methods that span the electromagnetic spectrum from gamma to radio waves. ‘‘Soil’’ refers to all other, typically unconsolidated, material including those sufficiently fine-grained to be mobilized by wind. Soil consequently encompasses a variety of regolith components identified at landing sites. Typical examples include: bedform (a feature that develops at the interface of fluid and a moveable bed such as ripples and dunes), clasts (fragments of pre-existing minerals and rock such as sediment deposits), concretions, drift, dust, rocky fragments, and sand. The functional definition reinforces a recently proposed generic definition of soil on terrestrial bodies (including asteroids and satellites) as an unconsolidated and chemically weathered surficial layer of fine-grained mineral or organic material exceeding centimeter scale thickness, with or without coarse elements and cemented portions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Curiosity is a car-sized Mars rover exploring Gale crater and Mount Sharp on Mars as part of NASA's Mars Science Laboratory (MSL) mission. Curiosity was launched from Cape Canaveral (CCAFS) on November 26, 2011, at 15:02:00 UTC and landed on Aeolis Palus inside Gale crater on Mars on August 6, 2012, 05:17:57 UTC. The Bradbury Landing site was less than from the center of the rover's touchdown target after a journey.
NASA's 2003 Mars Exploration Rover Mission has amassed an enormous amount of scientific information related to the Martian geology and atmosphere, as well as providing some astronomical observations from Mars. This article covers information gathered by the Opportunity rover during the initial phase of its mission. Information on science gathered by Spirit can be found mostly in the Spirit rover article. The unmanned Mars exploration mission, commenced in 2003 sent two robotic rovers, Spirit and Opportunity, to explore the Martian surface and geology.
Almost all water on Mars today exists as ice, though it also exists in small quantities as vapor in the atmosphere. What was thought to be low-volume liquid brines in shallow Martian soil, also called recurrent slope lineae, may be grains of flowing sand and dust slipping downhill to make dark streaks. While most water ice is buried, it is exposed at the surface across several locations on Mars. In the mid-latitudes, it is exposed by impact craters, steep scarps and gullies.
Ice-nucleating particles (INPs) enable ice formation, profoundly affecting the microphysical and radiative properties, lifetimes, and precipitation rates of clouds. Mineral dust emitted from arid regions, particularly potassium-containing feldspar (K-felds ...
Human deep space exploration is presented with multiple challenges, such as the reliable, efficient and sustainable operation of life support systems. The production and recycling of oxygen, carbon dioxide (CO2) and fuels are hereby key, as a resource resu ...
Curiosity refers to the intrinsic desire of humans and animals to explore the unknown, even when there is no apparent reason to do so. Thus far, no single, widely accepted definition or framework for curiosity has emerged, but there is growing consensus th ...