A renewable resource (also known as a flow resource) is a natural resource which will replenish to replace the portion depleted by usage and consumption, either through natural reproduction or other recurring processes in a finite amount of time in a human time scale. When the recovery rate of resources is unlikely to ever exceed a human time scale, these are called perpetual resources. Renewable resources are a part of Earth's natural environment and the largest components of its ecosphere. A positive life-cycle assessment is a key indicator of a resource's sustainability.
Definitions of renewable resources may also include agricultural production, as in agricultural products and to an extent water resources. In 1962, Paul Alfred Weiss defined renewable resources as: "The total range of living organisms providing man with life, fibres, etc...". Another type of renewable resources is renewable energy resources. Common sources of renewable energy include solar, geothermal and wind power, which are all categorized as renewable resources. Fresh water is an example of renewable resources.
Water resources
Water can be considered a renewable material when carefully controlled usage and temperature, treatment, and release are followed. If not, it would become a non-renewable resource at that location. For example, as groundwater is usually removed from an aquifer at a rate much greater than its very slow natural recharge, it is a considered non-renewable resource. Removal of water from the pore spaces in aquifers may cause permanent compaction (subsidence) that cannot be renewed. 97.5% of the water on the Earth is salt water, and 3% is fresh water; slightly over two thirds of this is frozen in glaciers and polar ice caps. The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction (0.008%) present above ground or in the air.
Water pollution is one of the main concerns regarding water resources. It is estimated that 22% of worldwide water is used in industry.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course is an introduction to the energy conversion. It focusses
on the thermodynamics of the engines and systems for the conversion of energy from fossil fuels and renewable resources. The relevan
A non-renewable resource (also called a finite resource) is a natural resource that cannot be readily replaced by natural means at a pace quick enough to keep up with consumption. An example is carbon-based fossil fuels. The original organic matter, with the aid of heat and pressure, becomes a fuel such as oil or gas. Earth minerals and metal ores, fossil fuels (coal, petroleum, natural gas) and groundwater in certain aquifers are all considered non-renewable resources, though individual elements are always conserved (except in nuclear reactions, nuclear decay or atmospheric escape).
Redirect2|Biological conservation|ConservationBiology (journal)|and|Biological Conservation (journal)Biological Conservation (journal)|and|Conservation Ecology (journal)Conservation Ecology (journal)|the popular movement|Conservationism Conservation biology is the study of the conservation of nature and of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions.
Sustainability is a social goal for people to co-exist on Earth over a long time. Specific definitions of this term are disputed and have varied with literature, context, and time. Experts often describe sustainability as having three dimensions (or pillars): environmental, economic, and social, and many publications emphasize the environmental dimension. In everyday use, sustainability often focuses on countering major environmental problems, including climate change, loss of biodiversity, loss of ecosystem services, land degradation, and air and water pollution.
Can social, organisations and disciplinary values guide decisions when thinking about ethical challenges? With this presentation, I describe the ambivalence of decision-making when it comes to being a cause or a valuable resource for acting upon ethics cha ...
In the pursuit of a carbon-neutral chemical industry, minimizing fossil feedstock consumption while integrating renewable carbon sources is imperative. Surfactants, inherently amphiphilic, pose challenges in separation and recovery processes. Given their e ...
Organic solvents are ubiquitous in industrial and domestic applications from the production of pharmaceuticals to household consumer products. The negative impact of most traditional solvents, especially aprotic types, on the environment, health, and safet ...