Concept

Bayesian approaches to brain function

Bayesian approaches to brain function investigate the capacity of the nervous system to operate in situations of uncertainty in a fashion that is close to the optimal prescribed by Bayesian statistics. This term is used in behavioural sciences and neuroscience and studies associated with this term often strive to explain the brain's cognitive abilities based on statistical principles. It is frequently assumed that the nervous system maintains internal probabilistic models that are updated by neural processing of sensory information using methods approximating those of Bayesian probability. This field of study has its historical roots in numerous disciplines including machine learning, experimental psychology and Bayesian statistics. As early as the 1860s, with the work of Hermann Helmholtz in experimental psychology the brain's ability to extract perceptual information from sensory data was modeled in terms of probabilistic estimation. The basic idea is that the nervous system needs to organize sensory data into an accurate internal model of the outside world. Bayesian probability has been developed by many important contributors. Pierre-Simon Laplace, Thomas Bayes, Harold Jeffreys, Richard Cox and Edwin Jaynes developed mathematical techniques and procedures for treating probability as the degree of plausibility that could be assigned to a given supposition or hypothesis based on the available evidence. In 1988 Edwin Jaynes presented a framework for using Bayesian Probability to model mental processes. It was thus realized early on that the Bayesian statistical framework holds the potential to lead to insights into the function of the nervous system. This idea was taken up in research on unsupervised learning, in particular the Analysis by Synthesis approach, branches of machine learning. In 1983 Geoffrey Hinton and colleagues proposed the brain could be seen as a machine making decisions based on the uncertainties of the outside world.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.