Concept

# Rayleigh–Ritz method

Summary
The Rayleigh–Ritz method is a direct numerical method of approximating eigenvalues, originated in the context of solving physical boundary value problems and named after Lord Rayleigh and Walther Ritz. It is used in all applications that involve approximating eigenvalues and eigenvectors, often under different names. In quantum mechanics, where a system of particles is described using a Hamiltonian, the Ritz method uses trial wave functions to approximate the ground state eigenfunction with the lowest energy. In the finite element method context, mathematically the same algorithm is commonly called the Ritz-Galerkin method. The Rayleigh–Ritz method or Ritz method terminology is typical in mechanical and structural engineering to approximate the eigenmodes and resonant frequencies of a structure. The name Rayleigh–Ritz is being debated vs. the Ritz method after Walther Ritz, since the numerical procedure has been published by Walther Ritz in 1908-1909. According to A. W. Leissa, Lord Rayleigh wrote a paper congratulating Ritz on his work in 1911, but stating that he himself had used Ritz's method in many places in his book and in another publication. This statement, although later disputed, and the fact that the method in the trivial case of a single vector results in the Rayleigh quotient make the arguable misnomer persist. According to S. Ilanko, citing Richard Courant, both Lord Rayleigh and Walther Ritz independently conceived the idea of utilizing the equivalence between boundary value problems of partial differential equations on the one hand and problems of the calculus of variations on the other hand for numerical calculation of the solutions, by substituting for the variational problems simpler approximating extremum problems in which a finite number of parameters need to be determined; see the article Ritz method for details. Ironically for the debate, the modern justification of the algorithm drops the calculus of variations in favor of the simpler and more general approach of orthogonal projection as in Galerkin method named after Boris Galerkin, thus leading also to the Ritz-Galerkin method naming.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Related people

Related units

Related concepts