**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Galerkin method

Summary

In mathematics, in the area of numerical analysis, Galerkin methods are named after the Soviet mathematician Boris Galerkin. They convert a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions.
Often when referring to a Galerkin method, one also gives the name along with typical assumptions and approximation methods used:

- Ritz–Galerkin method (after Walther Ritz) typically assumes symmetric and positive definite bilinear form in the weak formulation, where the differential equation for a physical system can be formulated via minimization of a quadratic function representing the system energy and the approximate solution is a linear combination of the given set of the basis functions.
- Bubnov–Galerkin method (after Ivan Bubnov) does not require the bilinear form to be symmetric and substitutes the energy minimization with orthogonality constr

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related courses (11)

Related publications (81)

ME-372: Finite element method

L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à appliquer cette méthode à des cas simples et à l'exploiter pour résoudre les problèmes de la pratique.

ME-371: Discretization methods in fluids

Ce cours présente une introduction aux méthodes d'approximation utilisées pour la simulation numérique en mécanique des fluides.
Les concepts fondamentaux sont présentés dans le cadre de la méthode des différences finies puis étendus à celles des éléments finis et spectraux.

MATH-451: Numerical approximation of PDEs

The course is about the derivation, theoretical analysis and implementation of the finite element method for the numerical approximation of partial differential equations in one and two space dimensions.

Loading

Loading

Loading

Related people (17)

Related concepts (3)

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the tr

The Rayleigh–Ritz method is a direct numerical method of approximating eigenvalues, originated in the context of solving physical boundary value problems and named after Lord Rayleigh and Walther Ritz

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathema

Related units (6)

Related lectures (35)

Jan Sickmann Hesthaven, Qian Wang

A reduced basis method based on a physics-informed machine learning framework is developed for efficient reduced-order modeling of parametrized partial differential equations (PDEs). A feedforward neural network is used to approximate the mapping from the time-parameter to the reduced coefficients. During the offline stage, the network is trained by minimizing the weighted sum of the residual loss of the reduced-order equations, and the data loss of the labeled reduced coefficients that are obtained via the projection of high-fidelity snapshots onto the reduced space. Such a network is referred to as physics-reinforced neural network (PRNN). As the number of residual points in time-parameter space can be very large, an accurate network – referred to as physics-informed neural network (PINN) – can be trained by minimizing only the residual loss. However, for complex nonlinear problems, the solution of the reduced-order equation is less accurate than the projection of high-fidelity solution onto the reduced space. Therefore, the PRNN trained with the snapshot data is expected to have higher accuracy than the PINN. Numerical results demonstrate that the PRNN is more accurate than the PINN and a purely data-driven neural network for complex problems. During the reduced basis refinement, the PRNN may obtain higher accuracy than the direct reduced-order model based on a Galerkin projection. The online evaluation of PINN/PRNN is orders of magnitude faster than that of the Galerkin reduced-order model.

2021In this work, we focus on the Dynamical Low Rank (DLR) approximation of PDEs equations with random parameters. This can be interpreted as a reduced basis method, where the approximate solution is expanded in separable form over a set of few deterministic basis functions at each time, with the peculiarity that both the deterministic modes and the stochastic coefficients are computed on the fly and are free to adapt in time so as best describe the structure of the random solution. Our first goal is to generalize and reformulate in a variational setting the Dynamically Orthogonal (DO) method, proposed by Sapsis and Lermusiaux (2009) for the approximation of fluid dynamic problems with random initial conditions. The DO method is reinterpreted as a Galerkin projection of the governing equations onto the tangent space along the approximate trajectory to the manifold M_S , given by the collection of all functions which can be expressed as a sum of S linearly independent deterministic modes combined with S linearly independent stochastic modes. Depending on the parametrization of the tangent space, one obtains a set of nonlinear differential equations, suitable for numerical integration, for both the coefficients and the basis functions of the approximate solution. By formalizing the DLR variational principle for parabolic PDEs with random parameters we establish a precise link with similar techniques developed in different contexts such as the Multi-Configuration Time-Dependent Hartree method in quantum dynamics and the Dynamical Low-Rank approximation in the finite dimensional setting. By the use of curvature estimates for the approximation manifold M_S , we derive a theoretical bound for the approximation error of the S-terms DO solution by the corresponding S-terms best approximation at each time instant. The bound is applicable for full rank DLR approximate solutions on the largest time interval in which the best S-terms approximation is continuously differentiable in time. Secondly, we focus on parabolic equations, especially incompressible Navier-Stokes equations, with random Dirichlet boundary conditions and we propose a DLR technique which allows for the strong imposition of such boundary conditions. We show that the DLR variational principle can be set in the constrained manifold of all S rank random fields with a prescribed value on the boundary, expressed in low-rank format, with rank M smaller than S. We characterize the tangent space to the constrained manifold by means of the Dual Dynamically Orthogonal formulation, in which the stochastic modes are kept orthonormal and the deterministic modes satisfy suitable boundary conditions, consistent with the original problem. The same formulation is also used to conveniently include the incompressibility constraint when dealing with incompressible Navier-Stokes equations with random parameters. Finally, we extend the DLR approach for the approximation of wave equations with random parameters. We propose the Symplectic DO method, according to which the governing equation is rewritten in Hamiltonian form and the approximate solution is sought in the low dimensional manifold of all complex-valued random fields with fixed rank. Recast in the real setting, the approximate solution is expanded over a set of a few dynamical symplectic deterministic modes and satisfies the symplectic projection of the Hamiltonian system into the tangent space of the approximation manifold along the trajectory.

In this thesis, we consider the numerical approximation of high order geometric Partial Differential Equations (PDEs). We first consider high order PDEs defined on surfaces in the 3D space that are represented by single-patch tensor product NURBS. Then, we spatially discretize the PDEs by means of NURBS-based Isogeometric Analysis (IGA) in the framework of the Galerkin method. With this aim, we consider the construction of periodic NURBS function spaces with high degree of global continuity, even on closed surfaces. As benchmark problems for the proposed discretization, we propose Laplace-Beltrami problems of the fourth and sixth orders, as well as the corresponding eigenvalue problems, and we analyze the impact of the continuity of the basis functions on the accuracy as well as on computational costs. The numerical solution of two high order phase field problems on both open and closed surfaces is also considered: the fourth order Cahn-Hilliard equation and the sixth order crystal equation, both discretized in time with the generalized-alpha method. We then consider the numerical approximation of geometric PDEs, derived, in particular, from the minimization of shape energy functionals by L^2-gradient flows. We analyze the mean curvature and the Willmore gradient flows, leading to second and fourth order PDEs, respectively. These nonlinear geometric PDEs are discretized in time with Backward Differentiation Formulas (BDF), with a semi-implicit formulation based on an extrapolation of the geometry, leading to a linear problem to be solved at each time step. Results about the numerical approximation of the two geometric flows on several geometries are analyzed. Then, we study how the proposed mathematical framework can be employed to numerically approximate the equilibrium shapes of lipid bilayer biomembranes, or vesicles, governed by the Canham-Helfrich curvature model. We propose two numerical schemes for enforcing the conservation of the area and volume of the vesicles, and report results on benchmark problems. Then, the approximation of the equilibrium shapes of biomembranes with different values of reduced volume is presented. Finally, we consider the dynamics of a vesicle, e.g. a red blood cell, immersed in a fluid, e.g. the plasma. In particular, we couple the curvature-driven model for the lipid membrane with the incompressible Navier-Stokes equations governing the fluid. We consider a segregated approach, with a formulation based on the Resistive Immersed Surface method applied to NURBS geometries. After analyzing benchmark fluid simulations with immersed NURBS objects, we report numerical results for the investigation of the dynamics of a vesicle under different flow conditions.