In mathematics, in the area of numerical analysis, Galerkin methods are named after the Soviet mathematician Boris Galerkin. They convert a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions.
Often when referring to a Galerkin method, one also gives the name along with typical assumptions and approximation methods used:
Ritz–Galerkin method (after Walther Ritz) typically assumes symmetric and positive definite bilinear form in the weak formulation, where the differential equation for a physical system can be formulated via minimization of a quadratic function representing the system energy and the approximate solution is a linear combination of the given set of the basis functions.
Bubnov–Galerkin method (after Ivan Bubnov) does not require the bilinear form to be symmetric and substitutes the energy minimization with orthogonality constraints determined by the same basis functions that are used to approximate the solution. In an operator formulation of the differential equation, Bubnov–Galerkin method can be viewed as applying an orthogonal projection to the operator.
Petrov–Galerkin method (after Georgii I. Petrov) allows using basis functions for orthogonality constraints (called test basis functions) that are different from the basis functions used to approximate the solution. Petrov–Galerkin method can be viewed as an extension of Bubnov–Galerkin method, applying a projection that is not necessarily orthogonal in the operator formulation of the differential equation.
Examples of Galerkin methods are:
the Galerkin method of weighted residuals, the most common method of calculating the global stiffness matrix in the finite element method,
the boundary element method for solving integral equations,
Krylov subspace methods.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique
La modélisation numérique des solides est abordée à travers la méthode des éléments finis. Les aspects purement analytiques sont d'abord présentés, puis les moyens d'interpolation, d'intégration et de
Introduces continuity in function spaces and the Galerkin method for solving boundary value problems.
Explores the equivalence between strong and weak formulations in the Finite Element Method, along with the Galerkin method.
Introduces linear statics for linear elastic solids in small deformations, stress equilibrium, the Virtual Work Principle, and the Finite Element Method.
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems).
Molecular quantum dynamics simulations are essential for understanding many fundamental phenomena in physics and chemistry. They often require solving the time-dependent Schrödinger equation for molecular nuclei, which is challenging even for medium-sized ...
EPFL2024
, ,
In this work, we analyze space-time reduced basis methods for the efficient numerical simulation of haemodynamics in arteries. The classical formulation of the reduced basis (RB) method features dimensionality reduction in space, while finite difference sc ...
Philadelphia2024
,
In this paper, we propose a reduced-order modeling strategy for two-way Dirichlet-Neumann parametric coupled problems solved with domain-decomposition (DD) sub-structuring methods. We split the original coupled differential problem into two sub-problems wi ...