Anna Fontcuberta i Morral2014 Associate Professor at the Institut des Matériaux, EPFL
2008 Assistant Professor Tenure Track at the Institut des Matériaux, EPFL
2009 Habilitation in Physics, Technische Universität München
2005-2010 Marie Curie Excellence Grant Team Leader at Walter Schottky Institut, Technische Universität München, on leave from Centre National de la Recherche Scientifique (CNRS, France)
2004-2005 Visiting Scientist at the California Institute of Technology, on leave from CNRS; Senior Scientist and co-founder of Aonex Technologies (a startup company for large area layer transfer of InP and Ge on foreign substrates for the main application of multi-junction solar cells)
2003 Permanent Research Fellow at CNRS, Ecole Polytechnique, France
2001-2002 Postdoctoral Scholar at the California Institute of Technology
Study of wafer bonding and hydrogen-induced exfoliation processes for integration of mismatched materials in views of photovoltaic applications
Sponsor: Professor Harry A. Atwater
1998-2001 PhD in Materials Science, Ecole Polytechnique
Study of polymorphous silicon: growth mechanisms, optical and structural properties. Application to Solar Cells and Thin Film Transistors
Advisor: Pere Roca i Cabarrocas
1997-1998 Diplôme dEtudes Approfondis (D.E.A.) in Materials Science at Université Paris XI, France .
1993-1997 BA in Physics at Universitat de Barcelona
Rahul Kumar GuptaRahul Gupta completed his B.Tech in electrical engineering at NIT Rourkela, India in 2014. From 2015 to 2016, he worked as research assistant on micro-energy harvesting at NUS Singapore. In 2018, he received his M.Sc degree in electrical engineering with orientation in smart grids technology at EPFL Lausanne, Switzerland. He received Zanelli: technologie et développement durable prize 2018 for his master project in the field of sustainable development. Currently, he is pursuing his Ph.D. degree at the Distributed Electrical Systems Laboratory, EPFL. His research interests include model predictive control, distributed optimization and data-driven control of the active distribution networks in the presence of uncertainties.
François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.