Concept

Retraction (topology)

Summary
In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a subspace. An absolute neighborhood retract (ANR) is a particularly well-behaved type of topological space. For example, every topological manifold is an ANR. Every ANR has the homotopy type of a very simple topological space, a CW complex. Let X be a topological space and A a subspace of X. Then a continuous map is a retraction if the restriction of r to A is the identity map on A; that is, for all a in A. Equivalently, denoting by the inclusion, a retraction is a continuous map r such that that is, the composition of r with the inclusion is the identity of A. Note that, by definition, a retraction maps X onto A. A subspace A is called a retract of X if such a retraction exists. For instance, any non-empty space retracts to a point in the obvious way (the constant map yields a retraction). If X is Hausdorff, then A must be a closed subset of X. If is a retraction, then the composition ι∘r is an idempotent continuous map from X to X. Conversely, given any idempotent continuous map we obtain a retraction onto the image of s by restricting the codomain. A continuous map is a deformation retraction of a space X onto a subspace A if, for every x in X and a in A, In other words, a deformation retraction is a homotopy between a retraction and the identity map on X. The subspace A is called a deformation retract of X. A deformation retraction is a special case of a homotopy equivalence. A retract need not be a deformation retract. For instance, having a single point as a deformation retract of a space X would imply that X is path connected (and in fact that X is contractible). Note: An equivalent definition of deformation retraction is the following.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (14)
Related people (1)