Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En topologie générale et surtout en topologie algébrique, une rétraction est, intuitivement, un « rétrécissement » d'un espace topologique sur l'un de ses sous-espaces. Ce sous-espace est un rétract par déformation s'il existe une fonction permettant d'effectuer ce « rétrécissement » de façon continue. Soient X un espace topologique et A un sous-espace. Une rétraction de X sur A est une application continue r de X dans A dont la restriction à A est l'application identité de A, c'est-à-dire telle que pour tout point a de A, r(a) = a ; autrement dit, c'est une rétraction de l'application d'inclusion i de A dans X : r ∘ i = Id. On dit que A est un rétract (ou rétracte ) de X s'il existe une telle rétraction. On dit que A est un rétract de voisinage de X si A est un rétract d'un voisinage de A dans X. Un rétract absolu pour une famille F d'espaces topologiques (ou ARF, de l'anglais absolute retract) est un élément de F qui est un rétract de tout élément de F dans lequel il est fermé. Lorsque la famille F n'est pas explicitée, il s'agit de celle des espaces normaux. De même, un rétract absolu de voisinage pour F (ou ANRF, de l'anglais absolute neighbourhood retract) est un élément de F qui est un rétract de voisinage de tout élément de F dans lequel il est fermé. Une rétraction par déformation de X sur A est une homotopie entre une rétraction de X sur A et l'application identité de X, c'est-à-dire une application continuetelle queOn appelle aussi rétraction par déformation toute rétraction r dont la composée i ∘ r avec l'inclusion est homotope à l'identité de X, c'est-à-dire toute application de X dans A de la forme x ↦ F(x, 1) avec F comme ci-dessus. On dit que A est un rétract par déformation de X s'il existe une rétraction par déformation de X sur A. Une rétraction forte par déformation est une telle application F vérifiant de plus(Certains auteurs appellent cela une rétraction par déformation.) Toute rétraction de X sur A est évidemment surjective. Tout singleton d'un espace en est un rétract.