A geofence is a virtual perimeter for a real-world geographic area. A geofence can be dynamically generated (as in a radius around a point location) or match a predefined set of boundaries (such as school zones or neighborhood boundaries).
The use of a geofence is called geofencing, and one example of use involves a location-aware device of a location-based service (LBS) user entering or exiting a geofence. Geofencing approach is based on the observation that users move from one place to another and then stay at that place for a while. This method combines awareness of the user's current location with awareness of the user's proximity to locations that may be of interest. This activity could trigger an alert to the device's user as well as messaging to the geofence operator. This info, which could contain the location of the device, could be sent to a mobile telephone or an email account.
Geofencing was invented in the early 1990s and patented in 1995 by American inventor Michael Dimino, using the first-of-its-kind GPS and GSM technology for tracking and locating anywhere on the globe from a remote location.
Cellular geofencing for global tracking is cited in the United States Patent Office over 240 times by major companies such as IBM and Microsoft since 1995 and is first mentioned as:
A global tracking system (GTS) for monitoring an alarm condition associated with and locating a movable object, the GTS comprising:
a cellular telephone located with the movable object;
a GPS (global positioning system) receiver located with the movable object, the GPS receiver being effective for providing data reflecting a present spacial position of the movable object, in terms of spacial latitude/longitude coordinates;
an interface between the GPS receiver and the cellular telephone, the interface being connected between the GPS receiver and the cellular telephone and including circuitry for transmitting the spacial coordinates from the GPS receiver through the telephone, wirelessly to a remote location; and
an alarm for detecting that the object has been moved, by calculating a spatial movement of the object which exceeds a predetermined distance based on information supplied by the GPS receiver, and the alarm initiating the transmission to the remote location the spatial coordinates from the GPS receiver when said movement of predetermined distance has been detected.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A vehicle tracking system combines the use of automatic vehicle location in individual vehicles with software that collects these fleet data for a comprehensive picture of vehicle locations. Modern vehicle tracking systems commonly use GPS or GLONASS technology for locating the vehicle, but other types of automatic vehicle location technology can also be used. Vehicle information can be viewed on electronic maps via the Internet or specialized software.
A point of interest (POI) is a specific point location that someone may find useful or interesting. An example is a point on the Earth representing the location of the Eiffel Tower, or a point on Mars representing the location of its highest mountain, Olympus Mons. Most consumers use the term when referring to hotels, campsites, fuel stations or any other categories used in modern automotive navigation systems. Users of a mobile device can be provided with geolocation and time aware POI service that recommends geolocations nearby and with a temporal relevance (e.
An automotive navigation system is part of the automobile controls or a third party add-on used to find direction in an automobile. It typically uses a satellite navigation device to get its position data which is then correlated to a position on a road. When directions are needed routing can be calculated. On the fly traffic information (road closures, congestion) can be used to adjust the route.
We present a computational model of spatial navigation comprising different learning mechanisms in mammals, i.e., associative, cognitive mapping and parallel systems. This model is able to reproduce a large number of experimental results in different varia ...
We study the innovation effects of the Agreement on the Free Movement of Persons (AFMP), signed by Switzerland and the EU in 1999. Using geocoded patent data, complemented by matched inventor-immigrant-census records, we identify a large number of cross-bo ...
2020
,
Crowdsourcing enables application developers to benefit from large and diverse datasets at a low cost. Specifically, mobile crowdsourcing (MCS) leverages users' devices as sensors to perform geo-located data collection. The collection of geo-located data r ...