A vehicle tracking system combines the use of automatic vehicle location in individual vehicles with software that collects these fleet data for a comprehensive picture of vehicle locations. Modern vehicle tracking systems commonly use GPS or GLONASS technology for locating the vehicle, but other types of automatic vehicle location technology can also be used. Vehicle information can be viewed on electronic maps via the Internet or specialized software. Urban public transit authorities are an increasingly common user of vehicle tracking systems, particularly in large cities.
Several types of vehicle tracking devices exist. Typically they are classified as "passive" and "active". "Passive" devices store GPS location, speed, heading and sometimes a trigger event such as key on/off, door open/closed. Once the vehicle returns to a predetermined point, the device is removed and the data downloaded to a computer for evaluation. Passive systems include auto download type that transfer data via wireless download. "Active" devices also collect the same information but usually transmit the data in near-real-time via cellular or satellite networks to a computer or data center for evaluation.
Many modern vehicle tracking devices combine both active and passive tracking abilities: when a cellular network is available and a tracking device is connected it transmits data to a server; when a network is not available the device stores data in internal memory and will transmit stored data to the server later when the network becomes available again.
Historically, vehicle tracking has been accomplished by installing a box into the vehicle, either self-powered with a battery or wired into the vehicle's power system. For detailed vehicle locating and tracking this is still the predominant method; however, many companies are increasingly interested in the emerging cell phone technologies that provide tracking of multiple entities, such as both a salesperson and their vehicle. These systems also offer tracking of calls, texts, web use and generally provide a wider range of options.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A Fleet Telematics System (FTS) allows the information exchange between a commercial vehicle fleet and their central authority, i.e., the dispatching office. A FTS typically consists of mobile Vehicle Systems (VS) and a stationary Fleet Communication System (FCS). The FCS may be a stand-alone application maintained by the motor carrier or an internet service running by the supplier of the system. The FCS usually includes a database in which all vehicle positions and messages are stored.
A satellite navigation device, satnav device or satellite navigation receiver is a user equipment that uses one or more of several global navigation satellite systems (GNSS) to calculate the device's geographical position and provide navigational advice. Depending on the software used, the satnav device may display the position on a map, as geographic coordinates, or may offer routing directions. four GNSS systems are operational: the original United States' Global Positioning System (GPS), the European Union's Galileo, Russia's GLONASS, and China's BeiDou Navigation Satellite System.
A geofence is a virtual perimeter for a real-world geographic area. A geofence can be dynamically generated (as in a radius around a point location) or match a predefined set of boundaries (such as school zones or neighborhood boundaries). The use of a geofence is called geofencing, and one example of use involves a location-aware device of a location-based service (LBS) user entering or exiting a geofence. Geofencing approach is based on the observation that users move from one place to another and then stay at that place for a while.
This summer school is an hands-on introduction on the fundamentals of image analysis for scientists. A series of lectures provide students with the key concepts in the field, and are followed by pract
This advanced course will provide students with the knowledge to tackle the design of privacy-preserving ICT systems. Students will learn about existing technologies to prect privacy, and how to evalu
This course is an introduction to the alignment of enterprise needs with the possibilities offered by Information Technology (IT). Using a simulated business case, we explore how to define the require
This article investigates the performance and accuracy of continuous Real-Time Kinematic (RTK) Global Navigation Satellite System (GNSS) position tracking for hydromorphological surveys, based on a comprehensive river restoration monitoring campaign. The a ...
We propose a test -time adaptation for 6D object pose tracking that learns to adapt a pre -trained model to track the 6D pose of novel objects. We consider the problem of 6D object pose tracking as a 3D keypoint detection and matching task and present a mo ...
Elsevier Sci Ltd2024
,
This bachelor project, conducted at the Experimental Museology Laboratory (eM+) at EPFL, focusing on immersive technologies and visualization systems. The project aimed to enhance the Panorama+, a 360-degree stereoscopic interactive visualization system, b ...