A unit of measurement is a definite magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity. Any other quantity of that kind can be expressed as a multiple of the unit of measurement. For example, a length is a physical quantity. The metre (symbol m) is a unit of length that represents a definite predetermined length. For instance, when referencing "10 metres" (or 10 m), what is actually meant is 10 times the definite predetermined length called "metre". The definition, agreement, and practical use of units of measurement have played a crucial role in human endeavour from early ages up to the present. A multitude of systems of units used to be very common. Now there is a global standard, the International System of Units (SI), the modern form of the metric system. In trade, weights and measures is often a subject of governmental regulation, to ensure fairness and transparency. The International Bureau of Weights and Measures (BIPM) is tasked with ensuring worldwide uniformity of measurements and their traceability to the International System of Units (SI). Metrology is the science of developing nationally and internationally accepted units of measurement. In physics and metrology, units are standards for measurement of physical quantities that need clear definitions to be useful. Reproducibility of experimental results is central to the scientific method. A standard system of units facilitates this. Scientific systems of units are a refinement of the concept of weights and measures historically developed for commercial purposes. Science, medicine, and engineering often use larger and smaller units of measurement than those used in everyday life. The judicious selection of the units of measurement can aid researchers in problem solving (see, for example, dimensional analysis). In the social sciences, there are no standard units of measurement and the theory and practice of measurement is studied in psychometrics and the theory of conjoint measurement.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (30)
COM-309: Introduction to quantum information processing
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
CH-244: Quantum chemistry
Introduction to Quantum Mechanics with examples related to chemistry
Show more
Related lectures (231)
Energy Conservation in Fluid Flows
Explores energy conservation in fluid flows, emphasizing practical applications and the importance of fundamental physics laws.
Quantum Source Coding
Covers entropic notions in quantum sources, Shannon entropy, Von Neumann entropy, and source coding.
Revision of the SI: International System of Units
Explores the revision of the International System of Units, focusing on the kilogram, ampere, kelvin, and mole, and the impact on scientific measurements.
Show more
Related publications (468)

A Comparative Analysis of Tools & Task Types for Measuring Computational Problem-Solving

Richard Lee Davis, Engin Walter Bumbacher, Jérôme Guillaume Brender

How to measure students' Computational Problem-Solving (CPS) competencies is an ongoing research topic. Prevalent approaches vary by measurement tools (e.g., interactive programming, multiple-choice tests, or programming-independent tests) and task types ( ...
Association for Computing Machinery2024

Performance evaluation of radon active sensors and passive dosimeters at low and high radon concentrations

Dusan Licina, Joan Rey

Radon is a naturally occurring radioactive gas that has the potential to accumulate in buildings and over time, causes lung cancer in humans. Present methods for radon measurements are disparate, which pose challenges to benchmark radon concentrations and ...
Oxford2024

Setting priorities in CNF particle size measurement: What is needed vs. what is feasible

Tiffany Abitbol

Measuring the size of cellulose nanomaterials can be challenging, especially in the case of branched and entangled cellulose nanofibrils (CNFs). The International Organization for Standardization, Technical Committee 6, Task Group 1-Cellulosic Nanomaterial ...
TECH ASSOC PULP PAPER IND INC2023
Show more
Related concepts (29)
System of units of measurement
A system of units of measurement, also known as a system of units or system of measurement, is a collection of units of measurement and rules relating them to each other. Systems of measurement have historically been important, regulated and defined for the purposes of science and commerce. Instances in use include the International System of Units or () (the modern form of the metric system), the British imperial system, and the United States customary system.
Gram
The gram (originally gramme; SI unit symbol g) is a unit of mass in the International System of Units (SI) equal to one one thousandth of a kilogram. Originally defined as of 1795 as "the absolute weight of a volume of pure water equal to the cube of the hundredth part of a metre [1 cm3], and at the temperature of melting ice", the defining temperature (~0 °C) was later changed to 4 °C, the temperature of maximum density of water. However, by the late 19th century, there was an effort to make the base unit the kilogram and the gram a derived unit.
Hartree
The hartree (symbol: Eh or Ha), also known as the Hartree energy, is the unit of energy in the Hartree atomic units system, named after the British physicist Douglas Hartree. Its CODATA recommended value is = The hartree energy is approximately the electric potential energy of the hydrogen atom in its ground state and, by the virial theorem, approximately twice its ionization energy; the relationships are not exact because of the finite mass of the nucleus of the hydrogen atom and relativistic corrections.
Show more
Related MOOCs (4)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.
Elements of Geomatics
Ce cours de base en géomatique présente les concepts et méthodes d’acquisition, de gestion et de représentation des géodonnées. Il inclut les bases de topométrie, géodésie et cartographie, avec un acc
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.