The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named in honor of James Watt (1736–1819), an 18th-century Scottish inventor, mechanical engineer, and chemist who improved the Newcomen engine with his own steam engine in 1776. Watt's invention was fundamental for the Industrial Revolution.
When an object's velocity is held constant at one meter per second against a constant opposing force of one newton, the rate at which work is done is one watt.
In terms of electromagnetism, one watt is the rate at which electrical work is performed when a current of one ampere (A) flows across an electrical potential difference of one volt (V), meaning the watt is equivalent to the volt-ampere (the latter unit, however, is used for a different quantity from the real power of an electrical circuit).
Two additional unit conversions for watt can be found using the above equation and Ohm's law.
where ohm () is the SI derived unit of electrical resistance.
A person having a mass of 100 kg who climbs a 3-meter-high ladder in 5 seconds is doing work at a rate of about 600 watts. Mass times acceleration due to gravity times height divided by the time it takes to lift the object to the given height gives the rate of doing work or power.
A labourer over the course of an eight-hour day can sustain an average output of about 75 watts; higher power levels can be achieved for short intervals and by athletes.
The watt is named after the Scottish inventor James Watt. The unit name was proposed initially by C. William Siemens in August 1882 in his President's Address to the Fifty-Second Congress of the British Association for the Advancement of Science. Noting that units in the practical system of units were named after leading physicists, Siemens proposed that watt might be an appropriate name for a unit of power.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces statistical field theory, and uses concepts related to phase transitions to discuss a variety of complex systems (random walks and polymers, disordered systems, combinatorial o
Methods for the rational use and conversion of energy in industrial processes : how to analyse the energy usage, calculate the heat recovery by pinch analysis, define heat exchanger network, integrate
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Human power is work or energy that is produced from the human body. It can also refer to the power (rate of work per time) of a human. Power comes primarily from muscles, but body heat is also used to do work like warming shelters, food, or other humans. World records of power performance by humans are of interest to work planners and work-process engineers. The average level of human power that can be maintained over a certain duration of time is interesting to engineers designing work operations in industry.
A kilowatt-hour (unit symbol: kW⋅h or kW h; commonly written as kWh) is a non-SI unit of energy: one kilowatt of power for one hour. It is equivalent to 3.6 megajoules (MJ) in SI units. Kilowatt-hours are a common billing unit for electrical energy supplied by electric utilities. Metric prefixes are used for multiples and submultiples of the basic unit, the watt-hour. The kilowatt-hour is a composite unit of energy equal to one kilowatt (kW) sustained for (multiplied by) one hour.
The volt-ampere (SI symbol: VA, sometimes V⋅A or V A) is the unit of measurement for apparent power in an electrical circuit. It is the product of the root mean square voltage (in volts) and the root mean square current (in amperes). Volt-amperes are usually used for analyzing alternating current (AC) circuits. In direct current (DC) circuits, this product is equal to the real power, measured in watts. The volt-ampere is dimensionally equivalent to the watt: in SI units, 1 V⋅A = 1 W.
Gravitational waves (GWs) generate oscillating electromagnetic effects in the vicinity of external electric and magnetic fields. We discuss this phenomenon with a particular focus on reinterpreting the results of axion haloscopes based on lumped-element de ...
We demonstrated an integrated magnetic-free optical isolator for Si3N4 photonics using AlN piezoelectric actuators via spatio-temporal modulation. By entering into the strong mode coupling regime, maximum of 9dB isolation and
The middle-infrared (mid-IR) spectral range hosts the most intense roto-vibrational absorption lines of many important molecules. Particularly, mid-IR spectroscopy constitutes a unique tool for identifying and quantifying molecular species through their mi ...