PythagoreanismPythagoreanism originated in the 6th century BC, based on and around the teachings and beliefs held by Pythagoras and his followers, the Pythagoreans. Pythagoras established the first Pythagorean community in the ancient Greek colony of Kroton, in modern Calabria (Italy). Early Pythagorean communities spread throughout Magna Graecia. Pythagoras' death and disputes about his teachings led to the development of two philosophical traditions within Pythagoreanism.
Difference of two squaresIn mathematics, the difference of two squares is a squared (multiplied by itself) number subtracted from another squared number. Every difference of squares may be factored according to the identity in elementary algebra. The proof of the factorization identity is straightforward. Starting from the left-hand side, apply the distributive law to get By the commutative law, the middle two terms cancel: leaving The resulting identity is one of the most commonly used in mathematics.
Perfect numberIn number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3 (excluding itself), and 1 + 2 + 3 = 6, so 6 is a perfect number. The sum of divisors of a number, excluding the number itself, is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum. Equivalently, a perfect number is a number that is half the sum of all of its positive divisors including itself; in symbols, where is the sum-of-divisors function.
Squared triangular numberIn number theory, the sum of the first n cubes is the square of the nth triangular number. That is, The same equation may be written more compactly using the mathematical notation for summation: This identity is sometimes called Nicomachus's theorem, after Nicomachus of Gerasa (c. 60 – c. 120 CE). Nicomachus, at the end of Chapter 20 of his Introduction to Arithmetic, pointed out that if one writes a list of the odd numbers, the first is the cube of 1, the sum of the next two is the cube of 2, the sum of the next three is the cube of 3, and so on.
Quadratic sieveThe quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second fastest method known (after the general number field sieve). It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization algorithm, meaning that its running time depends solely on the size of the integer to be factored, and not on special structure or properties.
Fermat polygonal number theoremIn additive number theory, the Fermat polygonal number theorem states that every positive integer is a sum of at most n n-gonal numbers. That is, every positive integer can be written as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers, and as the sum of five or fewer pentagonal numbers, and so on. That is, the n-gonal numbers form an additive basis of order n. Three such representations of the number 17, for example, are shown below: 17 = 10 + 6 + 1 (triangular numbers) 17 = 16 + 1 (square numbers) 17 = 12 + 5 (pentagonal numbers).