**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Finite morphism

Summary

In algebraic geometry, a finite morphism between two affine varieties is a dense regular map which induces isomorphic inclusion between their coordinate rings, such that is integral over . This definition can be extended to the quasi-projective varieties, such that a regular map between quasiprojective varieties is finite if any point like has an affine neighbourhood V such that is affine and is a finite map (in view of the previous definition, because it is between affine varieties).
A morphism f: X → Y of schemes is a finite morphism if Y has an open cover by affine schemes
such that for each i,
is an open affine subscheme Spec Ai, and the restriction of f to Ui, which induces a ring homomorphism
makes Ai a finitely generated module over Bi. One also says that X is finite over Y.
In fact, f is finite if and only if for every open affine subscheme V = Spec B in Y, the inverse image of V in X is affine, of the form Spec A, with A a finitely generated B-module.
For example, for any field k, is a finite morphism since as -modules. Geometrically, this is obviously finite since this is a ramified n-sheeted cover of the affine line which degenerates at the origin. By contrast, the inclusion of A1 − 0 into A1 is not finite. (Indeed, the Laurent polynomial ring k[y, y−1] is not finitely generated as a module over k[y].) This restricts our geometric intuition to surjective families with finite fibers.
The composition of two finite morphisms is finite.
Any base change of a finite morphism f: X → Y is finite. That is, if g: Z → Y is any morphism of schemes, then the resulting morphism X ×Y Z → Z is finite. This corresponds to the following algebraic statement: if A and C are (commutative) B-algebras, and A is finitely generated as a B-module, then the tensor product A ⊗B C is finitely generated as a C-module. Indeed, the generators can be taken to be the elements ai ⊗ 1, where ai are the given generators of A as a B-module.
Closed immersions are finite, as they are locally given by A → A/I, where I is the ideal corresponding to the closed subscheme.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (13)

MATH-410: Riemann surfaces

This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex

ME-372: Finite element method

L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique

MATH-314: Representation theory of finite groups

Group representation theory studies the actions of groups on vector spaces. This allows the use of linear algebra to study certain group theoretical questions. In this course the groups in question wi

Related concepts (24)

Glossary of algebraic geometry

This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.

Finite morphism

In algebraic geometry, a finite morphism between two affine varieties is a dense regular map which induces isomorphic inclusion between their coordinate rings, such that is integral over . This definition can be extended to the quasi-projective varieties, such that a regular map between quasiprojective varieties is finite if any point like has an affine neighbourhood V such that is affine and is a finite map (in view of the previous definition, because it is between affine varieties).

Morphism of algebraic varieties

In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties.

Related lectures (83)

Finite Elements: Elasticity and Variational FormulationMATH-212: Analyse numérique et optimisation

Explores finite element methods for elasticity problems and variational formulations, emphasizing admissible deformations and numerical implementations.

Holography in Classical GravityPHYS-739: Conformal Field theory and Gravity

Explores hints of holography in classical black hole thermodynamics.

Numerical Analysis: Advanced TopicsMATH-351: Advanced numerical analysis

Covers advanced topics in numerical analysis, focusing on techniques for solving complex mathematical problems.