In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function.
A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the concepts of rational and birational maps are widely used as well; they are partial functions that are defined locally by rational fractions instead of polynomials.
An algebraic variety has naturally the structure of a locally ringed space; a morphism between algebraic varieties is precisely a morphism of the underlying locally ringed spaces.
If X and Y are closed subvarieties of and (so they are affine varieties), then a regular map is the restriction of a polynomial map . Explicitly, it has the form:
where the s are in the coordinate ring of X:
where I is the ideal defining X (note: two polynomials f and g define the same function on X if and only if f − g is in I). The image f(X) lies in Y, and hence satisfies the defining equations of Y. That is, a regular map is the same as the restriction of a polynomial map whose components satisfy the defining equations of .
More generally, a map f:X→Y between two varieties is regular at a point x if there is a neighbourhood U of x and a neighbourhood V of f(x) such that f(U) ⊂ V and the restricted function f:U→V is regular as a function on some affine charts of U and V. Then f is called regular, if it is regular at all points of X.
Note: It is not immediately obvious that the two definitions coincide: if X and Y are affine varieties, then a map f:X→Y is regular in the first sense if and only if it is so in the second sense. Also, it is not immediately clear whether regularity depends on a choice of affine charts (it does not.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this seminar we will study toric varieties, a well studied class of algebraic varieties which is ubiquitous in algebraic geometry, but also relevant in theoretical physics and combinatorics.
This course will explain the theory of vanishing cycles and perverse sheaves. We will see how the Hard Lefschetz theorem can be proved using perverse sheaves. If we have more time we will try to see t
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
In algebraic geometry, a closed immersion of schemes is a morphism of schemes that identifies Z as a closed subset of X such that locally, regular functions on Z can be extended to X. The latter condition can be formalized by saying that is surjective. An example is the inclusion map induced by the canonical map . The following are equivalent: is a closed immersion. For every open affine , there exists an ideal such that as schemes over U. There exists an open affine covering and for each j there exists an ideal such that as schemes over .
In algebraic geometry, an irreducible algebraic set or irreducible variety is an algebraic set that cannot be written as the union of two proper algebraic subsets. An irreducible component is an algebraic subset that is irreducible and maximal (for set inclusion) for this property. For example, the set of solutions of the equation xy = 0 is not irreducible, and its irreducible components are the two lines of equations x = 0 and y =0.
In mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are irreducible. Formally, a rational map between two varieties is an equivalence class of pairs in which is a morphism of varieties from a non-empty open set to , and two such pairs and are considered equivalent if and coincide on the intersection (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).
We prove that if (X, A) is a threefold pair with mild singularities such that -(KX + A) is nef, then the numerical class of -(KX + A) is effective. ...
Berlin2023
,
Let k be a field, and let L be an etale k-algebra of finite rank. If a is an element of k(x), let X-a be the affine variety defined by N-L/k(x) = a. Assuming that L has at least one factor that is a cyclic field extension of k, we give a combinatorial desc ...
Jerusalem2023
, , , ,
Explores the construction of the field of rational functions on a variety and its connection with local rings and dimensions.
Explores primary decomposition, recovering rings from spectra, and studying regular functions on spectra.
Explores regular functions on quasi-affine varieties, defining morphisms, local rings, and rational functions.
We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater than five. In doing this, we generalize the theory of global F-regularity to mixed characteristic and identify certain stable sections of adjoint lin ...