The Precision Time Protocol (PTP) is a protocol used to synchronize clocks throughout a computer network. On a local area network, it achieves clock accuracy in the sub-microsecond range, making it suitable for measurement and control systems. PTP is employed to synchronize financial transactions, mobile phone tower transmissions, sub-sea acoustic arrays, and networks that require precise timing but lack access to satellite navigation signals.
The first version of PTP, IEEE 1588-2002, was published in 2002. IEEE 1588-2008, also known as PTP Version 2 is not backward compatible with the 2002 version. IEEE 1588-2019 was published in November 2019 and includes backward-compatible improvements to the 2008 publication. IEEE 1588-2008 includes a profile concept defining PTP operating parameters and options. Several profiles have been defined for applications including telecommunications, electric power distribution and audiovisual. is an adaptation of PTP for use with Audio Video Bridging and Time-Sensitive Networking.
According to John Eidson, who led the IEEE 1588-2002 standardization effort, "IEEE 1588 is designed to fill a niche not well served by either of the two dominant protocols, NTP and GPS. IEEE 1588 is designed for local systems requiring accuracies beyond those attainable using NTP. It is also designed for applications that cannot bear the cost of a GPS receiver at each node, or for which GPS signals are inaccessible."
PTP was originally defined in the IEEE 1588-2002 standard, officially entitled Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, and published in 2002. In 2008, IEEE 1588-2008 was released as a revised standard; also known as PTP version 2 (PTPv2), it improves accuracy, precision and robustness but is not backward compatible with the original 2002 version. IEEE 1588-2019 was published in November 2019, is informally known as PTPv2.1 and includes backwards-compatible improvements to the 2008 publication.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discusses the analysis of alignment quality in latitude, longitude, heading, and more.
Explains synchronization of synchronous machines with the power grid and analyzes power diagrams.
Introduces control basics, real-time programming, interrupts, and sensor networks in embedded systems, emphasizing resource management and real-time constraints.
The Network Time Protocol (NTP) is a networking protocol for clock synchronization between computer systems over packet-switched, variable-latency data networks. In operation since before 1985, NTP is one of the oldest Internet protocols in current use. NTP was designed by David L. Mills of the University of Delaware. NTP is intended to synchronize all participating computers to within a few milliseconds of Coordinated Universal Time (UTC).
Time-sensitive networks, as in the context of IEEE Time-Sensitive Networking (TSN) and IETF Deterministic Networking (DetNet), offer deterministic services with guaranteed bounded latency in order to support safety-critical applications. In this thesis, we ...
EPFL2023
Related units (4)
, , ,
3D single object tracking (SOT) is an indispensable part of automated driving. Existing approaches rely heavily on large, densely labeled datasets. However, annotating point clouds is both costly and time-consuming. Inspired by the great success of cycle t ...
Ieee Computer Soc2023
Time-sensitive networks provide worst-case guarantees for applications in domains such as the automobile, automation, avionics, and the space industries. A violation of these guarantees can cause considerable financial loss and serious damage to human live ...