The Neogene (ˈniː.ədʒiːn , informally Upper Tertiary or Late Tertiary) is a geologic period and system that spans 20.45 million years from the end of the Paleogene Period million years ago (Mya) to the beginning of the present Quaternary Period Mya. The Neogene is sub-divided into two epochs, the earlier Miocene and the later Pliocene. Some geologists assert that the Neogene cannot be clearly delineated from the modern geological period, the Quaternary. The term "Neogene" was coined in 1853 by the Austrian palaeontologist Moritz Hörnes (1815–1868).
During this period, mammals and birds continued to evolve into modern forms, while other groups of life remained relatively unchanged. The first humans (Homo habilis) appeared in Africa near the end of the period. Some continental movements took place, the most significant event being the connection of North and South America at the Isthmus of Panama, late in the Pliocene. This cut off the warm ocean currents from the Pacific to the Atlantic Ocean, leaving only the Gulf Stream to transfer heat to the Arctic Ocean. The global climate cooled considerably throughout the Neogene, culminating in a series of continental glaciations in the Quaternary Period that follows.
In ICS terminology, from upper (later, more recent) to lower (earlier):
The Pliocene Epoch is subdivided into two ages:
Piacenzian Age, preceded by
Zanclean Age
The Miocene Epoch is subdivided into six ages:
Messinian Age, preceded by
Tortonian Age
Serravallian Age
Langhian Age
Burdigalian Age
Aquitanian Age
In different geophysical regions of the world, other regional names are also used for the same or overlapping ages and other timeline subdivisions.
The terms Neogene System (formal) and Upper Tertiary System (informal) describe the rocks deposited during the Neogene Period.
The continents in the Neogene were very close to their current positions. The Isthmus of Panama formed, connecting North and South America. The Indian subcontinent continued to collide with Asia, forming the Himalayas.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Pleistocene (ˈplaɪstəˌsiːn,_-stoʊ- ; often referred to colloquially as the Ice Age) is the geological epoch that lasted from 2.58 million to 11,700 years ago, spanning the Earth's most recent period of repeated glaciations. Before a change was finally confirmed in 2009 by the International Union of Geological Sciences, the cutoff of the Pleistocene and the preceding Pliocene was regarded as being 1.806 million years Before Present (BP). Publications from earlier years may use either definition of the period.
The Pliocene (pronˈplaɪ.əsiːn,_ˈplaɪ.oʊ- ; also Pleiocene) is the epoch in the geologic time scale that extends from 5.333 million to 2.58 million years ago. It is the second and most recent epoch of the Neogene Period in the Cenozoic Era. The Pliocene follows the Miocene Epoch and is followed by the Pleistocene Epoch. Prior to the 2009 revision of the geologic time scale, which placed the four most recent major glaciations entirely within the Pleistocene, the Pliocene also included the Gelasian Stage, which lasted from 2.
Antarctica (ænˈtɑːrktᵻkə) is Earth's southernmost and least-populated continent. Situated almost entirely south of the Antarctic Circle and surrounded by the Southern Ocean (also known as the Antarctic Ocean), it contains the geographic South Pole. Antarctica is the fifth-largest continent, being about 40% larger than Europe, and has an area of . Most of Antarctica is covered by the Antarctic ice sheet, with an average thickness of . Antarctica is, on average, the coldest, driest, and windiest of the continents, and it has the highest average elevation.
Dans le cadre du workshop international, Fiona Pia de l'EPFL présentera les "Alpine resorts" et Mathias Gunz de l'ETH STUDIO BASEL présentera les "Quiet zones". Cette journée d'étude est organisée par le laboratoire AMP-LAVUE en partenariat avec l'Universi ...
High-level ab initio calculations are used to identify the mechanism of secondary (and primary) alkylperoxyl radical termination and explain why their reactions are much faster than their tertiary counterparts. Contrary to existing literature, the decompos ...
Atmospheric methane (CH4) recorded in Antarctic ice cores represents the closest ice proxy available for Greenland temperature changes beyond times when Greenland climate records are available. The record over four climatic cycles from the Vostok ice core ...