Self-supervised learningSelf-supervised learning (SSL) is a paradigm in machine learning for processing data of lower quality, rather than improving ultimate outcomes. Self-supervised learning more closely imitates the way humans learn to classify objects. The typical SSL method is based on an artificial neural network or other model such as a decision list. The model learns in two steps. First, the task is solved based on an auxiliary or pretext classification task using pseudo-labels which help to initialize the model parameters.
Named entityIn information extraction, a named entity is a real-world object, such as a person, location, organization, product, etc., that can be denoted with a proper name. It can be abstract or have a physical existence. Examples of named entities include Barack Obama, New York City, Volkswagen Golf, or anything else that can be named. Named entities can simply be viewed as entity instances (e.g., New York City is an instance of a city). From a historical perspective, the term Named Entity was coined during the MUC-6 evaluation campaign and contained ENAMEX (entity name expressions e.
Stochastic grammarA stochastic grammar (statistical grammar) is a grammar framework with a probabilistic notion of grammaticality: Stochastic context-free grammar Statistical parsing Data-oriented parsing Hidden Markov model Estimation theory The grammar is realized as a language model. Allowed sentences are stored in a database together with the frequency how common a sentence is. Statistical natural language processing uses stochastic, probabilistic and statistical methods, especially to resolve difficulties that arise because longer sentences are highly ambiguous when processed with realistic grammars, yielding thousands or millions of possible analyses.
Rule-based systemIn computer science, a rule-based system is used to store and manipulate knowledge to interpret information in a useful way. It is often used in artificial intelligence applications and research. Normally, the term rule-based system is applied to systems involving human-crafted or curated rule sets. Rule-based systems constructed using automatic rule inference, such as rule-based machine learning, are normally excluded from this system type. A classic example of a rule-based system is the domain-specific expert system that uses rules to make deductions or choices.
Frame semantics (linguistics)Frame semantics is a theory of linguistic meaning developed by Charles J. Fillmore that extends his earlier case grammar. It relates linguistic semantics to encyclopedic knowledge. The basic idea is that one cannot understand the meaning of a single word without access to all the essential knowledge that relates to that word.
Language technologyLanguage technology, often called human language technology (HLT), studies methods of how computer programs or electronic devices can analyze, produce, modify or respond to human texts and speech. Working with language technology often requires broad knowledge not only about linguistics but also about computer science. It consists of natural language processing (NLP) and computational linguistics (CL) on the one hand, many application oriented aspects of these, and more low-level aspects such as encoding and speech technology on the other hand.
Poverty of the stimulusPoverty of the stimulus (POS) is the controversial argument from linguistics that children are not exposed to rich enough data within their linguistic environments to acquire every feature of their language. This is considered evidence contrary to the empiricist idea that language is learned solely through experience. The claim is that the sentences children hear while learning a language do not contain the information needed to develop a thorough understanding of the grammar of the language.
Probabilistic context-free grammarGrammar theory to model symbol strings originated from work in computational linguistics aiming to understand the structure of natural languages. Probabilistic context free grammars (PCFGs) have been applied in probabilistic modeling of RNA structures almost 40 years after they were introduced in computational linguistics. PCFGs extend context-free grammars similar to how hidden Markov models extend regular grammars. Each production is assigned a probability.
StemmingIn linguistic morphology and information retrieval, stemming is the process of reducing inflected (or sometimes derived) words to their word stem, base or root form—generally a written word form. The stem need not be identical to the morphological root of the word; it is usually sufficient that related words map to the same stem, even if this stem is not in itself a valid root. Algorithms for stemming have been studied in computer science since the 1960s.
Dialogue systemA dialogue system, or conversational agent (CA), is a computer system intended to converse with a human. Dialogue systems employed one or more of text, speech, graphics, haptics, gestures, and other modes for communication on both the input and output channel. The elements of a dialogue system are not defined because this idea is under research, however, they are different from chatbot. The typical GUI wizard engages in a sort of dialogue, but it includes very few of the common dialogue system components, and the dialogue state is trivial.