The aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Ce cours est une introduction à la géométrie différentielle classique des courbes et des surfaces, principalement dans le
plan et l'espace euclidien.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
The course covers control theory and design for linear time-invariant systems : (i) Mathematical descriptions of systems (ii) Multivariables realizations; (iii) Stability ; (iv) Controllability and Ob
L'étudiant apprendra à résoudre numériquement divers problèmes mathématiques. Les propriétés théoriques de ces
méthodes seront discutées.
This course introduces the theory and application of modern convex optimization from an engineering perspective.
Le cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation
This course is an introduction to linear and discrete optimization.
Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an