Cray-2The Cray-2 is a supercomputer with four vector processors made by Cray Research starting in 1985. At 1.9 GFLOPS peak performance, it was the fastest machine in the world when it was released, replacing the Cray X-MP in that spot. It was, in turn, replaced in that spot by the Cray Y-MP in 1988. The Cray-2 was the first of Seymour Cray's designs to successfully use multiple CPUs. This had been attempted in the CDC 8600 in the early 1970s, but the emitter-coupled logic (ECL) transistors of the era were too difficult to package into a working machine.
Jaguar (supercomputer)Jaguar or OLCF-2 was a petascale supercomputer built by Cray at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The massively parallel Jaguar had a peak performance of just over 1,750 teraFLOPS (1.75 petaFLOPS). It had 224,256 x86-based AMD Opteron processor cores, and operated with a version of Linux called the Cray Linux Environment. Jaguar was a Cray XT5 system, a development from the Cray XT4 supercomputer. In both November 2009 and June 2010, TOP500, the semiannual list of the world's top 500 supercomputers, named Jaguar as the world's fastest computer.
OpenMPOpenMP (Open Multi-Processing) is an application programming interface (API) that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran, on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior.
General-purpose computing on graphics processing unitsGeneral-purpose computing on graphics processing units (GPGPU, or less often GPGP) is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU). The use of multiple video cards in one computer, or large numbers of graphics chips, further parallelizes the already parallel nature of graphics processing.
Single instruction, multiple dataSingle instruction, multiple data (SIMD) is a type of parallel processing in Flynn's taxonomy. SIMD can be internal (part of the hardware design) and it can be directly accessible through an instruction set architecture (ISA), but it should not be confused with an ISA. SIMD describes computers with multiple processing elements that perform the same operation on multiple data points simultaneously. Such machines exploit data level parallelism, but not concurrency: there are simultaneous (parallel) computations, but each unit performs the exact same instruction at any given moment (just with different data).
Vector processorIn computing, a vector processor or array processor is a central processing unit (CPU) that implements an instruction set where its instructions are designed to operate efficiently and effectively on large one-dimensional arrays of data called vectors. This is in contrast to scalar processors, whose instructions operate on single data items only, and in contrast to some of those same scalar processors having additional single instruction, multiple data (SIMD) or SWAR Arithmetic Units.
Exascale computingExascale computing refers to computing systems capable of calculating at least "1018 IEEE 754 Double Precision (64-bit) operations (multiplications and/or additions) per second (exaFLOPS)"; it is a measure of supercomputer performance. Exascale computing is a significant achievement in computer engineering: primarily, it allows improved scientific applications and better prediction accuracy in domains such as weather forecasting, climate modeling and personalised medicine.
Cray-3The Cray-3 was a vector supercomputer, Seymour Cray's designated successor to the Cray-2. The system was one of the first major applications of gallium arsenide (GaAs) semiconductors in computing, using hundreds of custom built ICs packed into a CPU. The design goal was performance around 16 GFLOPS, about 12 times that of the Cray-2. Work started on the Cray-3 in 1988 at Cray Research's (CRI) development labs in Chippewa Falls, Wisconsin. Other teams at the lab were working on designs with similar performance.
Lustre (file system)Lustre is a type of parallel , generally used for large-scale cluster computing. The name Lustre is a portmanteau word derived from Linux and cluster. Lustre file system software is available under the GNU General Public License (version 2 only) and provides high performance file systems for computer clusters ranging in size from small workgroup clusters to large-scale, multi-site systems. Since June 2005, Lustre has consistently been used by at least half of the top ten, and more than 60 of the top 100 fastest supercomputers in the world, including the world's No.
Torus interconnectA torus interconnect is a switch-less network topology for connecting processing nodes in a parallel computer system. In geometry, a torus is created by revolving a circle about an axis coplanar to the circle. While this is a general definition in geometry, the topological properties of this type of shape describes the network topology in its essence. The following images are 1D, and 2D torus. 1D torus is a simple circle, and 2D torus has the shape of a doughnut.