Just-in-time compilationIn computing, just-in-time (JIT) compilation (also dynamic translation or run-time compilations) is compilation (of computer code) during execution of a program (at run time) rather than before execution. This may consist of source code translation but is more commonly bytecode translation to machine code, which is then executed directly. A system implementing a JIT compiler typically continuously analyses the code being executed and identifies parts of the code where the speedup gained from compilation or recompilation would outweigh the overhead of compiling that code.
Von Neumann architectureThe von Neumann architecture—also known as the von Neumann model or Princeton architecture—is a computer architecture based on a 1945 description by John von Neumann, and by others, in the First Draft of a Report on the EDVAC. The document describes a design architecture for an electronic digital computer with these components: A processing unit with both an arithmetic logic unit and processor registers A control unit that includes an instruction register and a program counter Memory that stores data and instructions External mass storage Input and output mechanisms The term "von Neumann architecture" has evolved to refer to any stored-program computer in which an instruction fetch and a data operation cannot occur at the same time (since they share a common bus).
Linux kernelThe Linux kernel is a free and open-source, monolithic, modular, multitasking, Unix-like operating system kernel. It was originally written in 1991 by Linus Torvalds for his i386-based PC, and it was soon adopted as the kernel for the GNU operating system, which was written to be a free (libre) replacement for Unix. Linux is provided under the GNU General Public License version 2 only, but it contains files under other compatible licenses.
Execution (computing)Execution in computer and software engineering is the process by which a computer or virtual machine reads and acts on the instructions of a computer program. Each instruction of a program is a description of a particular action which must be carried out, in order for a specific problem to be solved. Execution involves repeatedly following a 'fetch–decode–execute' cycle for each instruction done by control unit. As the executing machine follows the instructions, specific effects are produced in accordance with the semantics of those instructions.
X86 assembly languagex86 assembly language is the name for the family of assembly languages which provide some level of backward compatibility with CPUs back to the Intel 8008 microprocessor, which was launched in April 1972. It is used to produce object code for the x86 class of processors. Regarded as a programming language, assembly is machine-specific and low-level. Like all assembly languages, x86 assembly uses mnemonics to represent fundamental CPU instructions, or machine code.
Self-relocationIn computer programming, a self-relocating program is a program that relocates its own address-dependent instructions and data when run, and is therefore capable of being loaded into memory at any address. In many cases, self-relocating code is also a form of self-modifying code. Self-relocation is similar to the relocation process employed by the linker-loader when a program is copied from external storage into main memory; the difference is that it is the loaded program itself rather than the loader in the operating system or shell that performs the relocation.
EmulatorIn computing, an emulator is hardware or software that enables one computer system (called the host) to behave like another computer system (called the guest). An emulator typically enables the host system to run software or use peripheral devices designed for the guest system. Emulation refers to the ability of a computer program in an electronic device to emulate (or imitate) another program or device. Many printers, for example, are designed to emulate HP LaserJet printers because so much software is written for HP printers.
Control tableControl tables are tables that control the control flow or play a major part in program control. There are no rigid rules about the structure or content of a control table—its qualifying attribute is its ability to direct control flow in some way through "execution" by a processor or interpreter. The design of such tables is sometimes referred to as table-driven design (although this typically refers to generating code automatically from external tables rather than direct run-time tables).
Polymorphic codeIn computing, polymorphic code is code that uses a polymorphic engine to mutate while keeping the original algorithm intact - that is, the code changes itself every time it runs, but the function of the code (its semantics) will not change at all. For example, the simple math expressions 3+1 and 6-2 both achieve the same result, yet run with different machine code in a CPU. This technique is sometimes used by computer viruses, shellcodes and computer worms to hide their presence. Encryption is the most common method to hide code.
Dynamic programming languageIn computer science, a dynamic programming language is a class of high-level programming languages, which at runtime execute many common programming behaviours that static programming languages perform during compilation. These behaviors could include an extension of the program, by adding new code, by extending objects and definitions, or by modifying the type system. Although similar behaviors can be emulated in nearly any language, with varying degrees of difficulty, complexity and performance costs, dynamic languages provide direct tools to make use of them.