The von Neumann architecture—also known as the von Neumann model or Princeton architecture—is a computer architecture based on a 1945 description by John von Neumann, and by others, in the First Draft of a Report on the EDVAC. The document describes a design architecture for an electronic digital computer with these components:
A processing unit with both an arithmetic logic unit and processor registers
A control unit that includes an instruction register and a program counter
Memory that stores data and instructions
External mass storage
Input and output mechanisms
The term "von Neumann architecture" has evolved to refer to any stored-program computer in which an instruction fetch and a data operation cannot occur at the same time (since they share a common bus). This is referred to as the von Neumann bottleneck, which often limits the performance of the corresponding system.
The design of a von Neumann architecture machine is simpler than in a Harvard architecture machine—which is also a stored-program system, yet has one dedicated set of address and data buses for reading and writing to memory, and another set of address and data buses to fetch instructions.
A stored-program computer uses the same underlying mechanism to encode both program instructions and data as opposed to designs which use a mechanism such as discrete plugboard wiring or fixed control circuitry for instruction implementation. Stored-program computers were an advancement over the manually reconfigured or fixed function computers of the 1940s, such as the Colossus and the ENIAC. These were programmed by setting switches and inserting patch cables to route data and control signals between various functional units.
The vast majority of modern computers use the same hardware mechanism to encode and store both data and program instructions, but have caches between the CPU and memory, and, for the caches closest to the CPU, have separate caches for instructions and data, so that most instruction and data fetches use separate buses (split cache architecture).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Hardware-software co-design is a well known concept in embedded system design.It is also a concept required in designing FPGA-accelerators in data-centers.This course teaches how to transform algorith
Beginning with a basic pipeline processor, student will learn to implement intriguing architectural techinques through a series of labs. The class will emphasize the implementation, debugging, and ana
In computing, the instruction register (IR) or current instruction register (CIR) is the part of a CPU's control unit that holds the instruction currently being executed or decoded. In simple processors, each instruction to be executed is loaded into the instruction register, which holds it while it is decoded, prepared and ultimately executed, which can take several steps. Some of the complicated processors use a pipeline of instruction registers where each stage of the pipeline does part of the decoding, preparation or execution and then passes it to the next stage for its step.
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These programs enable computers to perform a wide range of tasks. A computer system is a nominally complete computer that includes the hardware, operating system (main software), and peripheral equipment needed and used for full operation.
The history of computing hardware covers the developments from early simple devices to aid calculation to modern day computers. The first aids to computation were purely mechanical devices which required the operator to set up the initial values of an elementary arithmetic operation, then manipulate the device to obtain the result. Later, computers represented numbers in a continuous form (e.g. distance along a scale, rotation of a shaft, or a voltage). Numbers could also be represented in the form of digits, automatically manipulated by a mechanism.
Driven by the demand for real-time processing and the need to minimize latency in AI algorithms, edge computing has experienced remarkable progress. Decision-making AI applications stand out for their heavy reliance on data-centric operations, predominantl ...
EPFL2024
, , , ,
The increasing demand for computing power and the emergence of heterogeneous computing architectures have driven the exploration of innovative techniques to address current limitations in both the compute and memory subsystems. One such solution is the use ...
The essay focuses on the early work of Aldo Rossi, for the most part produced in collaboration with Gianugo Polesello, Luca Meda and Giorgio Grassi. In the early 1960s Rossi attempted to define a design method in which the juxtaposition of a limited set of ...