Concept

Stiffness matrix

Summary
In the finite element method for the numerical solution of elliptic partial differential equations, the stiffness matrix is a matrix that represents the system of linear equations that must be solved in order to ascertain an approximate solution to the differential equation. The stiffness matrix for the Poisson problem For simplicity, we will first consider the Poisson problem : -\nabla^2 u = f on some domain Ω, subject to the boundary condition u = 0 on the boundary of Ω. To discretize this equation by the finite element method, one chooses a set of basis functions {φ1, …, φn} defined on Ω which also vanish on the boundary. One then approximates : u \approx u^h = u_1\varphi_1+\cdots+u_n\varphi_n. The coefficients u1, u2, …, un are determined so that the error in the approximation is orthogonal to each basis function φ{{sub|i}}: : \int_{x \in \Omega} \varphi_i\cdot f ,
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading