The northern blot, or RNA blot, is a technique used in molecular biology research to study gene expression by detection of RNA (or isolated mRNA) in a sample. With northern blotting it is possible to observe cellular control over structure and function by determining the particular gene expression rates during differentiation and morphogenesis, as well as in abnormal or diseased conditions. Northern blotting involves the use of electrophoresis to separate RNA samples by size, and detection with a hybridization probe complementary to part of or the entire target sequence. Strictly speaking, the term 'northern blot' refers specifically to the capillary transfer of RNA from the electrophoresis gel to the blotting membrane. However, the entire process is commonly referred to as northern blotting. The northern blot technique was developed in 1977 by James Alwine, David Kemp, and George Stark at Stanford University. Northern blotting takes its name from its similarity to the first blotting technique, the Southern blot, named for biologist Edwin Southern. The major difference is that RNA, rather than DNA, is analyzed in the northern blot. A general blotting procedure starts with extraction of total RNA from a homogenized tissue sample or from cells. Eukaryotic mRNA can then be isolated through the use of oligo (dT) cellulose chromatography to isolate only those RNAs with a poly(A) tail. RNA samples are then separated by gel electrophoresis. Since the gels are fragile and the probes are unable to enter the matrix, the RNA samples, now separated by size, are transferred to a nylon membrane through a capillary or vacuum blotting system. A nylon membrane with a positive charge is the most effective for use in northern blotting since the negatively charged nucleic acids have a high affinity for them. The transfer buffer used for the blotting usually contains formamide because it lowers the annealing temperature of the probe-RNA interaction, thus eliminating the need for high temperatures, which could cause RNA degradation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
BIO-204: Integrated labo in Life sciences II
Au cours de deux semestres, vous utilisez la biologie moléculaire, la biologie cellulaire ainsi que la biochimie pour cloner un ADNc dans un plasmide d'expression, afin de produire, purifier et caract
BIO-695: Image Processing for Life Science
Registration details will be announced via email. It takes place yearly from Sept./October to December & intends to teach image processing with a strong emphasis of applications in life sciences. The
MICRO-614: Electrochemical nano-bio-sensing and bio/CMOS interfaces
Main aim of the course is to introduce, in designing of modern wearable and implantable devices, the new concept of co-design three system' layers: Bio for Specificity, Nano for Sensitivity, and CMOS
Show more
Related lectures (14)
RNA Sensors: GFP-Mimics and Spinach Technology
Explores RNA sensors, GFP-mimics, and Spinach Technology for RNA imaging and molecular detection.
Electrophoresis: Amino Acids and Protein Analysis
Explores amino acids, protein analysis, pH gradient setup, and electroblotting techniques for DNA and proteins.
Genetic Mechanisms: Prader Willi Syndrome
Explores the genetic mechanisms of Prader Willi syndrome and DNA analysis techniques.
Show more
Related publications (85)

Urtica dioica Leaf Infusion Enhances the Sensitivity of Triple-Negative Breast Cancer Cells to Cisplatin Treatment

Rita Sarkis, Maria Younes

Urtica dioica (UD) has been widely used in traditional medicine due to its therapeutic benefits, including its anticancer effects. Natural compounds have a promising potential when used in combination with chemotherapeutic drugs. The present study explores ...
MDPI2023

Living Photovoltaics based on Recombinant Expression of MtrA Decaheme in Photosynthetic Bacteria

Ardemis Anoush Boghossian, Melania Reggente, Mohammed Mouhib, Alessandra Antonucci, Nils Schürgers, Sara Politi

At the center of microbial bioelectricity applications lies the critical need to express foreign heme proteins that are capable of redirecting the electron flux of the cell’s metabolism. This study presents bioengineered Synechocystis sp. PCC 6803 cells ca ...
2023

The Antioxidant and Proapoptotic Effects of Sternbergia clusiana Bulb Ethanolic Extract on Triple-Negative and Estrogen-Dependent Breast Cancer Cells In Vitro

Natalia Gasilova, Laure Menin, Maria Younes

Background: Sternbergia clusiana belongs to the Amaryllidaceae family and is recognized for the valuable biological activity of its major bioactive compounds. The aim of the current is to evaluate the anticancer effects of the ethanolic bulb extract of Ste ...
MDPI2023
Show more
Related concepts (16)
Polymerase chain reaction
The polymerase chain reaction (PCR) is a method widely used to make millions to billions of copies of a specific DNA sample rapidly, allowing scientists to amplify a very small sample of DNA (or a part of it) sufficiently to enable detailed study. PCR was invented in 1983 by American biochemist Kary Mullis at Cetus Corporation; Mullis and biochemist Michael Smith, who had developed other essential ways of manipulating DNA, were jointly awarded the Nobel Prize in Chemistry in 1993.
Western blot
The western blot (sometimes called the protein immunoblot), or western blotting, is a widely used analytical technique in molecular biology and immunogenetics to detect specific proteins in a sample of tissue homogenate or extract. Besides detecting the proteins, this technique is also utilized to visualize, distinguish, and quantify the different proteins in a complicated protein combination.
Gene expression
Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, proteins or non-coding RNA, and ultimately affect a phenotype. These products are often proteins, but in non-protein-coding genes such as transfer RNA (tRNA) and small nuclear RNA (snRNA), the product is a functional non-coding RNA.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.